|
|
Scholar Recommendation Research Based on Academic Keywords and Co-citation |
Xiong Huixiang, Li Xiaomin, Du Jin |
School of Information Management, Central China Normal University, Wuhan 430079 |
|
|
Abstract The surge in academic data has caused an information overload, which, in turn, burdens scientific research users. Research scholars recommend a method that can improve the efficiency of scientific research and facilitate the smooth development of scientific research. This paper constructs a personalized chemist recommendation model based on combined similarity calculation. The combined similarity calculation includes calculations based on the similarity of scholar feature words and calculations based on the co-citation similarity of scholars. The former considers the similarity of scholars based on the research content, while the latter considers the similarity of scholars based on the co-citation relationship. At the same time, the data in the Chinese Social Sciences Citation Index (CSSCI) database and China National Knowledge Infrastructure (CNKI) are used for model verification, and the accuracy rate, recall rate, and F value are used to evaluate the recommendation effect. The experimental results show that the recommendation model proposed in this paper has achieved good results; thus, it can be recommended for target scholars. Scholars with similar research interests promote academic communication.
|
Received: 04 June 2020
|
|
|
|
1 Xia F, Wang W, Bekele T M, et al. Big scholarly data: a survey[J]. IEEE Transactions on Big Data, 2017, 3(1): 18-35. 2 王伟. 基于学术大数据的科学家合作行为分析与挖掘[D]. 大连: 大连理工大学, 2018. 3 熊回香, 杨雪萍, 蒋武轩, 等. 基于学术能力及合作关系网络的学者推荐研究[J]. 情报科学, 2019, 37(5): 71-78. 4 李响, 谭静. 融合相关性与多样性的学术论文推荐方法研究[J]. 情报理论与实践, 2017, 40(6): 99-103. 5 刘萍, 郑凯伦, 邹德安. 基于LDA模型的科研合作推荐研究[J]. 情报理论与实践, 2015, 38(9): 79-85. 6 蒲姗姗. 基于知识互补的科研合作专家推荐模型研究[J]. 情报理论与实践, 2018, 41(8): 96-101. 7 Tang J, Wu S, Sun J, et al. Cross-domain collaboration recommendation[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data mining. New York: ACM Press, 2012: 1285-1293. 8 李仲, 韩红旗, 吴广印, 等. 基于文本稀疏分布式表征的学术合作推荐[J]. 情报科学, 2019, 37(6): 113-118. 9 Fang H, Zhai C X. Probabilistic models for expert finding[C]// Proceedings of the European Conference on Information Retrieval. Heidelberg: Springer, 2007: 418-430. 10 张金柱, 于文倩, 刘菁婕, 等. 基于网络表示学习的科研合作预测研究[J]. 情报学报, 2018, 37(2): 132-139. 11 余传明, 林奥琛, 钟韵辞, 等. 基于网络表示学习的科研合作推荐研究[J]. 情报学报, 2019, 38(5): 500-511. 12 熊回香, 李跃艳. 基于Word2Vec的学者推荐与跨语言论文推荐模型研究[J]. 情报科学, 2019, 37(12): 19-26. 13 朱云霞, 魏建香. 基于共引网络的学者间潜在合作机会发现[J]. 西南民族大学学报(人文社科版), 2016, 37(9): 235-240. 14 陈卫静, 郑颖. 基于作者关键词耦合的潜在合作关系挖掘[J]. 情报杂志, 2013, 32(5): 127-131. 15 孙鸿飞, 侯伟. 改进TFIDF算法在潜在合作关系挖掘中的应用研究[J]. 现代图书情报技术, 2014(10): 84-92. 16 张金柱, 韩涛, 王小梅. 作者-关键词二分网络中的合著关系预测研究[J]. 图书情报工作, 2016, 60(21): 74-80. 17 林原, 刘海峰, 王海龙, 等. 基于表示学习的学者间潜在合作机会挖掘[J]. 情报杂志, 2019, 38(5): 65-70. 18 Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2013: 3111-3119. 19 赵蓉英, 郭凤娇, 曾宪琴. 基于位置的共被引分析实证研究[J]. 情报学报, 2016, 35(5): 492-500. |
|
|
|