|
|
Knowledge Evolution Analysis of ESI Research Fronts Based on Knowledge Element Migration |
Sun Zhen1, Leng Fuhai2 |
1.Institute of Information Management, Shandong University of Technology, Zibo 255000 2.Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190 |
|
|
Abstract Based on previous research, this paper proposes a method for analyzing the knowledge evolution of ESI research fronts based on knowledge element migration. Through quantitative analysis of the knowledge element transfer phenomenon and calculation of migration degree, the mechanism of the evolution of ESI (essential science indicators) research is further explored from the perspective of semantic analysis and knowledge computing. With the help of named entity recognition, bag of words model, PLDA (parallel latent Dirichlet allocation) topic model, information entropy algorithm, and other text semantic mining and natural language processing technologies, this paper explores the migration rule of knowledge elements by designing contribution index CVI and migration index MVI. The results show that by taking individual knowledge element in the front topic as the analysis object, it is possible to mine the changing laws of the inherent knowledge structure characteristics of ESI research front over time from a direct and fine-grained perspective. The method can not only reveal the evolution status of domain knowledge elements in different periods but also identify and track changes in the development of the research front in a more in-depth manner. This study provides a methodological reference for the scientific and technological intelligence work focusing on identifying domain research fronts.
|
Received: 28 September 2020
|
|
|
|
1 National Institute of Standards and Technology. Big Data R&D Initiative[EB/OL]. [2020-09-17]. https://www.nist.gov/system/files/documents/itl/ssd/is/NIST-BD-Platforms-05-Big-Data-Wact-lar-slides.pdf. 2 贺德方. 我国科技情报行业发展战略与发展路径的思考[J]. 情报学报, 2007, 26(4): 483-487. 3 李萌. 大数据时代对我国科技情报事业发展的新思考[J]. 中国软科学, 2016(12): 1-4. 4 戴国强. 推进竞跑阶段的创新情报研究[J]. 情报学报, 2019, 38(8): 771-777. 5 孙震, 冷伏海, 张晋辉. 基于知识元的科学计量方法及其实证研究[J]. 图书情报工作, 2017, 61(23): 89-99. 6 孙震, 冷伏海. 基于知识元的新型科学计量范式探析[J]. 情报学报, 2017, 36(6): 555-564. 7 孙震, 冷伏海. 一种基于知识元共现的ESI研究前沿知识演进分析方法[J]. 情报学报, 2018, 37(11): 1095-1113. 8 Einstein A. Approximate integration of the field equations of gravitation[J]. Sitzungsber. K. Preuss. Akad. Wiss, 1916(1): 688-696. 9 Einstein A. On gravitational waves[J]. Sitzungsber. K. Preuss. Akad. Wiss, 1918(1): 154-167. 10 Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116: 061102. 11 California Institute of Technology. LIGO Laboratory[EB/OL]. [2020-09-17]. https://www.ligo.caltech.edu/. 12 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. 13 Newman D, Smyth P, Welling M, et al. Distributed inference for latent Dirichlet allocation[C]// Proceedings of the 21st International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates, 2008: 1081-1088. 14 Wang Y, Bai H J, Stanton M, et al. PLDA: parallel latent Dirichlet allocation for large-scale applications[C]// Proceedings of the 5th International Conference on Algorithmic Aspects in Information and Management. Heidelberg: Springer, 2009: 301-314. 15 王旭仁, 姚叶鹏, 冉春风, 等. 一种并行LDA主题模型建立方法研究[J]. 北京理工大学学报, 2013, 33(6): 590-593. 16 高阳, 严建峰, 刘晓升. 朴素并行LDA[J]. 计算机科学, 2015, 42(6): 243-246. 17 Shannon C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(3): 379-423. 18 姚鑫, 丁艳丽, 张晓丹, 等. 钙钛矿太阳电池综述[J]. 物理学报, 2015, 64(3): 145-152. 19 Xiao J W, Shi C B, Zhou C X, et al. Contact engineering: electrode materials for highly efficient and stable perovskite solar cells[J]. Solar RRL, 2017, 1(9): 1700082. 20 阙亚萍, 翁坚, 胡林华, 等. 二氧化钛在钙钛矿太阳电池中的应用[J]. 化学进展, 2016, 28(1): 40-50. 21 Bi D Q, Boschloo G, Schwarzmüller S, et al. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells[J]. Nanoscale, 2013, 5(23): 11686-11691. 22 Son D Y, Im J H, Kim H S, et al. 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system[J]. The Journal of Physical Chemistry C, 2014, 118(30): 16567-16573. 23 Liu D Y, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nature Photonics, 2014, 8(2): 133-138. 24 Leijtens T, Eperon G E, Pathak S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nature Communications, 2013, 4: 2885. 25 Cai B, Xing Y D, Yang Z, et al. High performance hybrid solar cells sensitized by organolead halide perovskites[J]. Energy & Environmental Science, 2013, 6(5): 1480-1485. 26 Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237. 27 Yin W J, Yan Y F, Wei S H. Anomalous alloy properties in mixed halide perovskites[J]. The Journal of Physical Chemistry Letters, 2014, 5(21): 3625-3631. 28 楼孙棋, 宣曈曈, 郁彩艳, 等. 无机铅卤钙钛矿纳米晶的合成、性能及应用[J]. 应用化学, 2016, 33(9): 977-993. 29 孙震. 面向研究前沿演进分析应用的知识元计量方法探索[D]. 北京: 中国科学院大学, 2018. |
|
|
|