|
|
Discovering the Innovation User Groups by Converging Knowledge Characteristics and Collaborative Attributes |
Tang Hongting1, Li Zhihong2, Zhang Shaqing1,3 |
1.Guangdong University of Technology, Guangzhou 510520 2.South China University of Technology, Guangzhou 510641 3.Huizhou Guangdong University of Technology IoT Cooperative Innovation Institute Co., Ltd., Huizhou 516025 |
|
|
Abstract The open innovation community, as a typical application of innovation including user participation, can effectively gather user wisdom and provide new ideas for enterprise in product improvement and innovation. However, the openness of the community brings with it unorganized user-generated content, which in turn leads to a low efficiency of knowledge innovation in the community. At the same time, users, as independent individuals, are often limited by their cognitive constraints. To effectively gather and organize the users’ wisdom in an open innovation community, this research proposes to identify innovation user groups with great potential for product innovation under a specific knowledge context. To this end, we utilize a super-network model in analyzing complex systems to quantify the knowledge characteristics of users as well as their collaborative attributes. A genetic algorithm is used to achieve the optimal group solution. By conducting experimental research using real data from the MIUI Community, this research proves the feasibility and effectiveness of user identification. The findings theoretically contribute to the development of knowledge quantification and user identification. In addition, this research provides decision references for community management practices, especially for collaborative innovation.
|
Received: 19 May 2020
|
|
|
|
1 Bugshan H. Co-innovation: the role of online communities[J]. Journal of Strategic Marketing, 2015, 23(2): 175-186. 2 Rishika R, Kumar A, Janakiraman R, et al. The effect of customers' social media participation on customer visit frequency and profitability: an empirical investigation[J]. Information Systems Research, 2013, 24(1): 108-127. 3 谭雪晗, 涂艳, 马哲坤. 基于SNA的事故灾难舆情关键用户识别及治理[J]. 情报学报, 2017, 36(3): 297-306. 4 Sigala M. Social networks and customer involvement in new service development (NSD): the case of www.mystarbucksidea.com[J]. International Journal of Contemporary Hospitality Management, 2012, 24(7): 966-990. 5 Lee H, Choi K, Yoo D, et al. Recommending valuable ideas in an open innovation community: a text mining approach to information overload problem[J]. Industrial Management & Data Systems, 2018, 118(4): 683-699. 6 Zhang L Y, Zhang X. Multi-objective team formation optimization for new product development[J]. Computers & Industrial Engineering, 2013, 64(3): 804-811. 7 Zhou R, Qi G J. A system dynamics model for open innovation community[J]. International Journal of Enterprise Information Systems, 2018, 14(4): 78-88. 8 Yan J K, Leidner D E, Benbya H. Differential innovativeness outcomes of user and employee participation in an online user innovation community[J]. Journal of Management Information Systems, 2018, 35(3): 900-933. 9 Wu B, Gong C Y. Impact of open innovation communities on enterprise innovation performance: a system dynamics perspective[J]. Sustainability, 2019, 11(17): 4794-4820. 10 王莉, 李沁芳, 马云龙. 基于改进网络志方法的开放式创新社区中领先用户识别研究[J]. 科研管理, 2019, 40(10): 259-267. 11 刘勘, 范琴. 基于链路结构的微博领域专家识别研究[J]. 情报学报, 2016, 35(1): 66-76. 12 王闯, 王亚民. 基于K核分解的网络知识社区关键用户挖掘研究[J]. 情报理论与实践, 2019, 42(6): 149-153. 13 Jain L, Katarya R, Sachdeva S. Opinion leader detection using whale optimization algorithm in online social network[J]. Expert Systems with Applications, 2020, 142(3): 113016. 14 Fuger S, Schimpf R, Füller J, et al. User roles and team structures in a crowdsourcing community for international development – a social network perspective[J]. Information Technology for Development, 2017, 23(3): 438-462. 15 Akar E, Mardikyan S. User roles and contribution patterns in online communities: a managerial perspective[J]. SAGE Open, 2018, 8(3): 215824401879477. 16 von Hippel E. Lead users: a source of novel product concepts[J]. Management Science, 1986, 32(7): 791-805. 17 陈劲, 阳银娟. 协同创新的理论基础与内涵[J]. 科学学研究, 2012, 30(2): 161-164. 18 von Hippel E, Katz R. Shifting innovation to users via toolkits[J]. Management Science, 2002, 48(7): 821-833. 19 Chesbrough H, Lettl C, Ritter T. Value creation and value capture in open innovation[J]. Journal of Product Innovation Management, 2018, 35(6): 930-938. 20 Velichety S, Ram S, Bockstedt J. Quality assessment of peer-produced content in knowledge repositories using development and coordination activities[J]. Journal of Management Information Systems, 2019, 36(2): 478-512. 21 邢清华, 夏璐, 徐浩. 基于信息流的反导体系结构超网络均衡模型研究[J]. 系统工程理论与实践, 2018, 38(12): 3253-3264. 22 席运江, 党延忠. 基于加权超网络模型的知识网络鲁棒性分析及应用[J]. 系统工程理论与实践, 2007, 27(4): 134-140, 159. 23 张连峰, 周红磊, 王丹, 等. 基于超网络理论的微博舆情关键节点挖掘[J]. 情报学报, 2019, 38(12): 1286-1296. 24 田儒雅, 刘怡君, 牛文元. 舆论超网络的领袖引导模型[J]. 中国管理科学, 2014, 22(10): 136-141. 25 迟钰雪, 刘怡君. 基于超网络的线上线下舆情演化模型研究[J]. 系统工程理论与实践, 2019, 39(1): 259-272. 26 唐洪婷, 李志宏, 秦睿. 基于超网络的大众协同创新社区用户知识模型研究[J]. 管理学报, 2017, 14(6): 859-867. 27 Ghoshal G, Zlati? V, Caldarelli G, et al. Random hypergraphs and their applications[J]. Physical Review E, 2009, 79(6): 066118. 28 Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2001, 3(1): 601-608. 29 Dong K Y. Substructures of perceived knowledge quality and interactions with knowledge sharing and innovativeness: a sensemaking perspective[J]. Journal of Knowledge Management, 2014, 18(3): 523-537. 30 Valaei N, Rezaei S. Does Web 2.0 utilisation lead to knowledge quality, improvisational creativity, compositional creativity, and innovation in small and medium-sized enterprises? A sense-making perspective[J]. Technology Analysis & Strategic Management, 2017, 29(4): 381-394. 31 Kudaravalli S, Faraj S, Johnson S L. A configural approach to coordinating expertise in software development teams[J]. MIS Quarterly, 2017, 41(1): 43-64. 32 Chen W, Wei X H, Zhu K X. Engaging voluntary contributions in online communities: a hidden Markov model[J]. MIS Quarterly, 2018, 42(1): 83-100. 33 Pai P Y, Tsai H T. Reciprocity norms and information-sharing behavior in online consumption communities: an empirical investigation of antecedents and moderators[J]. Information & Management, 2016, 53(1): 38-52. 34 Ortiz J, Chih W H, Teng H C. Electronic word of mouth in the Taiwanese social networking community: participation factors[J]. Internet Research, 2017, 27(5): 1058-1084. 35 Buthelezi M, Mkhize P. Factors influencing quality of knowledge shared in software development community of practice[C]// Proceedings of the International Conference on Intellectual Capital and Knowledge Management and Organisational Learning. Academic Conferences International Limited, 2014: 91-100. 36 Kaihara T, Fujii S. Game theoretic enterprise management in industrial collaborative networks with multi-agent systems[J]. International Journal of Production Research, 2008, 46(5): 1297-1313. 37 Matei S A, Britt B C. Structural differentiation in social media: adhocracy, entropy, and the “1% effect”[M]. Cham: Springer, 2017. 38 Füller J, Jawecki G, Mühlbacher H. Innovation creation by online basketball communities[J]. Journal of Business Research, 2007, 60(1): 60-71. 39 Fonda L, Ghirardi G C, Rimini A. Decay theory of unstable quantum systems[J]. Reports on Progress in Physics, 1978, 41(4): 587-631. 40 Gruber M, Harhoff D, Hoisl K. Knowledge recombination across technological boundaries: scientists vs. engineers[J]. Management Science, 2013, 59(4): 837-851. 41 巩军, 刘鲁. 基于知识网络的专家知识的表示与度量[J]. 科学学研究, 2010, 28(10): 1521-1529. 42 苏加福. 协同产品创新知识网络模型及若干关键问题研究[D]. 重庆: 重庆大学, 2017. 43 Newman M E J. The structure of scientific collaboration networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(2): 404-409. 44 Goldberg D E, Holland J H. Genetic algorithms and machine learning[J]. Machine Learning, 1988, 3(2/3): 95-99. 45 Bao Y, Datta A. Simultaneously discovering and quantifying risk types from textual risk disclosures[J]. Management Science, 2014, 60(6): 1371-1391. |
|
|
|