|
|
Emotion Diffusion, Information Cascades, and Internet Opinion Deviation: A Dynamic Analysis Based on Emergency Events Panel Data from 2015 to 2020 |
Yang Changzheng |
School of Journalism & New Media, Xi'an Jiaotong University, Xi'an 710049 |
|
|
Abstract To determine the influence mechanism of Internet opinion deviation, this paper explores the related ideas of Internet opinion deviation. The paper uses China's emergency events panel data from 2015 to 2020 and the vector autoregressive (VAR) model, panel data model, and state-space model to analyze the relationship between emotion diffusion, information cascade, and Internet opinion deviation. The research results are as follows. First, the impact of emotion diffusion and information cascade on the bias of public opinion is significant, and the impact of emotion diffusion is greater than that of the information cascade. Emotion diffusion and the autocorrelation effect of the information cascade have a positive impact on the information cascade, and the autocorrelation lag effect of emotion diffusion and the information cascade have a significant impact on emotion diffusion. Second, the marginal effect of emotion diffusion on public opinion bias is significantly greater than that of the information cascade, that of emotion diffusion on information cascade is greater than that of the public opinion bias, and that of information cascade on emotional diffusion is greater than that of the public opinion bias. Third, the contribution rate of emotion diffusion to the fluctuation of public opinion bias is greater than that of the information cascade, and that of emotion diffusion to the fluctuation of information cascade is greater than that of the public opinion deviation. Finally, the interaction effects of emotion diffusion, information cascade, and public opinion bias vary in different demographic groups. Conclusions of the study show that it is possible to formulate related driving strategies and specific measures.
|
Received: 12 April 2020
|
|
|
|
1 朱霜. 国内情感传播研究的范式演进[J]. 今传媒, 2018, 26(3): 74-76. 2 朱鸣雄. 信息级联的产生及其性质分析[J]. 外国经济与管理, 1999(3): 24-27. 3 费孝通. 乡土中国: 经典珍藏版[M]. 上海: 上海人民出版社, 2013. 4 毛太田, 蒋冠文, 李勇, 等. 新媒体时代下网络热点事件情感传播特征研究[J]. 情报科学, 2019, 37(4): 29-35, 96. 5 陈显龙, 李姝娟. 基于情感扩散和社交关系的微博情感传播特性和能量传递特征分析[J]. 情报科学, 2017, 35(4): 32-36. 6 蒋晓丽, 何飞. 互动仪式理论视域下网络话题事件的情感传播研究[J]. 湘潭大学学报(哲学社会科学版), 2016, 40(2):120-123, 153. 7 Buck R, Powers S R. Emotion, media, and the global village[M]// The Routledge Handbook of Emotions and Mass Media. London: Routledge, 2010: 195-208. 8 Nabi R L. Emotion, media, and our social world[M]// Media and Social Life. London: Routledge, 2014: 3-15. 9 Rice R E, Love G. Electronic emotion: socioemotional content in a computer-mediated communication network[J]. Communication Research, 1987, 14(1): 85-108. 10 Bartsch A, Vorderer P, Mangold R, et al. Appraisal of emotions in media use: toward a process model of meta-emotion and emotion regulation[J]. Media Psychology, 2008, 11(1): 7-27. 11 Stepanov S, Nikankin A N. Recommendations for media content based on emotion: US20140298364[P]. 2014-10-02. 12 Derks D, Fischer A H, Bos A E R. The role of emotion in computer-mediated communication: a review[J]. Computers in Human Behavior, 2008, 24(3): 766-785. 13 刘启华, 张李义. 基于信息级联的网购用户羊群行为研究[J]. 情报科学, 2016, 34(5): 134-141. 14 董健, 陈彬, 刘亮, 等. 信息吸引力和影响力对级联规模分布的影响[J]. 系统仿真学报, 2018, 30(10): 3624-3631. 15 蔡国永, 毕梦莹, 刘建兴. 基于标记信息级联传播树特征的谣言检测新方法[J]. 计算机工程与科学, 2018, 40(8): 1488-1495. 16 邓卫华, 易明. 基于信息扩散级联理论的网络社区口碑信息树状传播研究[J]. 管理学报, 2017, 14(2): 254-260. 17 Lin W T, Tsai S C, Sun D S. What causes herding: information cascade or search cost?[J/OL]. SSRN Electronic Journal, (2010-04-26). http://dx.doi.org/10.2139/ssrn.1540443. 18 Anderson L R, Holt C A. Information cascade experiments[M]// Handbook of Experimental Economics Results. Amsterdam: Elsevier, 2008: 335-343. 19 Kaneko K. Information cascade with marginal stability in a network of chaotic elements[J]. Physica D: Nonlinear Phenomena, 1994, 77(4): 456-472. 20 Romero D M, Reinecke K, Robert L P, et al. The influence of early respondents: information cascade effects in online event scheduling[C]// Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2017: 101-110. 21 Tinati R, Luczak-Roesch M, Hall W. Finding structure in wikipedia edit activity: an information cascade approach[C]// Proceedings of the 25th International Conference Companion on World Wide Web. New York: ACM Press, 2016: 1007-1012. 22 Kim J, Kwon O, Lee D H. Social influence of hubs in information cascade processes[J]. Management Decision, 2017, 55(4): 730-744. 23 Li Q, Wu Z M, Yi L L, et al. WeSeer: visual analysis for better information cascade prediction of WeChat articles[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(2): 1399-1412. 24 Eftekhar M, Ganjali Y, Koudas N. Information cascade at group scale[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2013: 401-409. 25 Tong C, He W B, Niu J W, et al. A novel information cascade model in online social networks[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 444: 297-310. 26 阳长征. 危机事件中网络空间场域情境对舆情偏差的影响研究[J]. 现代情报, 2019, 39(10): 46-57. 27 白成祖, 张韧, 洪梅, 等. 信息扩散模型及其海温序列插值应用[J]. 解放军理工大学学报(自然科学版), 2015, 16(3): 254-259. 28 Leung Y, Huang C F. A new algorithm for estimating the risk of natural disasters with incomplete data[J]. International Journal of General Systems, 2000, 29(2): 175-204. 29 魏建良, 朱庆华. 基于信息级联的网络意见传播及扭曲效应国外研究进展[J]. 情报学报, 2019, 38(10): 1117-1128. 30 Materassi M, Consolini G, Smith N, et al. Information theory analysis of cascading process in a synthetic model of fluid turbulence[J]. Entropy, 2014, 16(3): 1272-1286. 31 李华君, 陈先红. 中国危机公关案例研究报告[M]. 武汉: 华中科技大学出版社, 2013. 32 Kong Q Y, Rizoiu M A, Xie L X. Modeling information cascades with self-exciting processes via generalized epidemic models[C]// Proceedings of the 13th International Conference on Web Search and Data Mining. New York: ACM Press, 2020: 286-294. 33 王天梅, 范峥, 孙宝文, 等. 网络群体性事件从众意向的影响因素研究[J]. 管理学报, 2017, 14(11): 1708-1717. 34 Petty R E, Cacioppo J T. The elaboration likelihood model of persuasion[J]. Advances in Experimental Social Psychology, 1986, 19: 123-205. 35 Genewein T, Leibfried F, Grau-Moya J, et al. Bounded rationality, abstraction, and hierarchical decision-making: an information-theoretic optimality principle[J]. Frontiers in Robotics and AI, 2015, 2: 1-24. 36 Ward M R. Diminishing marginal utility[J]. Journal of Political Economy, 2013, 121(3): 157-159. |
|
|
|