1 Tarus J K, Niu Z D, Yousif A. A hybrid knowledge-based recommender system for e-learning based on ontology and sequential pattern mining[J]. Future Generation Computer Systems, 2017, 72: 37-48. 2 Xu K, Zheng X S, Cai Y, et al. Improving user recommendation by extracting social topics and interest topics of users in uni-directional social networks[J]. Knowledge-Based Systems, 2018, 140: 120-133. 3 Chu S L, Brown S, Park H, et al. Towards personalized movie selection for wellness: investigating event-inspired movies[J]. International Journal of Human-Computer Interaction, 2020, 36(16): 1514-1526. 4 何顺民, 曹文泉. 网购平台个性化推荐算法的伦理困境及规制——以移动电商“淘宝”为例[J]. 城市学刊, 2019, 40(3): 1-6. 5 喻国明, 侯伟鹏, 程雪梅. 个性化新闻推送对新闻业务链的重塑[J]. 新闻记者, 2017(3): 9-13. 6 窦维萌, 郑秋爽, 孙宗锟. 基于DB-CF算法的音乐平台个性化推荐研究[J]. 软件导刊, 2020, 19(3): 57-59. 7 Pariser E. The filter bubble: what the Internet is hiding from you[M]. New York: The Penguin Press, 2011. 8 Sunstein C R. Infotopia: how many minds produce knowledge[M]. Oxford: Oxford University Press, 2006: 9. 9 彭燕林. 个性化推荐中的“过滤气泡”现象相关研究综述[J]. 科技创业月刊, 2019, 32(4): 135-139. 10 Shoemaker P J, Vos T. Gatekeeping theory[M]. New York: Routledge, 2009: 20. 11 DeIuliis D. Gatekeeping theory from social fields to social networks[J]. Communication Research Trends, 2015, 34(1): 4-23. 12 Bruns A. Gatekeeping, gatewatching, real-time feedback: new challenges for Journalism[J]. Brazilian Journalism Research, 2011, 7(2): 117-136. 13 Bozdag E. Bias in algorithmic filtering and personalization[J]. Ethics and Information Technology, 2013, 15(3): 209-227. 14 Anitha J, Kalaiarasu M. Optimized machine learning based collaborative filtering (OMLCF) recommendation system in e-commerce[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(6): 6387-6398. 15 Yang X W, Guo Y, Liu Y, et al. A survey of collaborative filtering based social recommender systems[J]. Computer Communications, 2014, 41(5): 1-10. 16 Barragáns-Martínez A B, Costa-Montenegro E, Burguillo J C, et al. A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition[J]. Information Sciences, 2010, 180(22): 4290-4311. 17 Geschke D, Lorenz J, Holtz P. The triple-filter bubble: using agent-based modelling to test a meta-theoretical framework for the emergence of filter bubbles and echo chambers[J]. British Journal of Social Psychology, 2019, 58(1): 129-149. 18 Krafft T D, Gamer M, Zweig K A. What did you see? Personalization, regionalization and the question of the filter bubble in Google’s search engine[J]. EPJ Data Science, 2019, 8: 1-23. 19 Ricci F, Rokach L, Shapira B. Introduction to recommender systems handbook[M]// Recommender Systems Handbook. Boston: Springer, 2011: 13. 20 Kitchenham B A, Charters S. Guidelines for performing systematic literature reviews in software engineering (EBSE 2007-001)[R]. Keele University and Durham University, 2017: 3. 21 Siddaway A P, Wood A M, Hedges L V. How to do a systematic review: a best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses[J]. Annual Review of Psychology, 2019, 70: 747-770. 22 Bruns A. Filter bubble[J]. Internet Policy Review, 2019, 8(4): 1426. 23 Spohr D. Fake news and ideological polarization[J]. Business Information Review, 2017, 34(3): 150-160. 24 Dutton W H, Reisdorf B, Dubois E, et al. Social shaping of the politics of Internet search and networking: moving beyond filter bubbles, echo chambers, and fake news[C]// Proceedings of the 45th Research Conference on Communications, Information, and Internet Policy, Arlington, 2017: 1-26. 25 Parisi L, Comunello F. Dating in the time of “relational filter bubbles”: exploring imaginaries, perceptions and tactics of Italian dating app users[J]. The Communication Review, 2020, 23(1): 66-89. 26 Fletcher R, Nielsen R K. Automated serendipity: the effect of using search engines on news repertoire balance and diversity[J]. Digital Journalism, 2018, 6(8): 976-989. 27 Sindermann C, Elhai J D, Moshagen M, et al. Age, gender, personality, ideological attitudes and individual differences in a person's news spectrum: how many and who might be prone to “filter bubbles” and “echo chambers” online?[J]. Heliyon, 2020, 6(1): e03214. 28 Cardenal A S, Aguilar-Paredes C, Galais C, et al. Digital technologies and selective exposure: how choice and filter bubbles shape news media exposure[J]. The International Journal of Press, 2019, 24(4): 465-486. 29 Courtois C, Slechten L, Coenen L. Challenging Google Search filter bubbles in social and political information: disconforming evidence from a digital methods case study[J]. Telematics and Informatics, 2018, 35(7): 2006-2015. 30 Hannak A, Sapiezynski P, Molavi Kakhki A, et al. Measuring personalization of web search[C]// Proceedings of the 22nd International Conference on World Wide Web. New York: ACM Press, 2013: 527-538. 31 Haim M, Arendt F, Scherr S. Abyss or shelter? On the relevance of web search engines’ search results when people Google for suicide[J]. Health Communication, 2017, 32(2): 253-258. 32 Puschmann C. Beyond the bubble: assessing the diversity of political search results[J]. Digital Journalism, 2019, 7(6): 824-843. 33 Nechushtai E, Lewis S C. What kind of news gatekeepers do we want machines to be? Filter bubbles, fragmentation, and the normative dimensions of algorithmic recommendations[J]. Computers in Human Behavior, 2019, 90: 298-307. 34 Bechmann A, Nielbo K L. Are we exposed to the same “news” in the news feed? An empirical analysis of filter bubbles as information similarity for Danish Facebook users[J]. Digital Journalism, 2018, 6(8): 1-13. 35 Min Y, Jiang T, Jin C, et al. Endogenetic structure of filter bubble in social networks[J]. Royal Society Open Science, 2019, 6(11): 190868. 36 Dillahunt T R, Brooks C A, Gulati S. Detecting and visualizing filter bubbles in Google and Bing[C]// Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems. New York: ACM Press, 2015: 1851-1856. 37 Haim M, Graefe A, Brosius H B. Burst of the filter bubble?[J]. Digital Journalism, 2018, 6(3): 330-343. 38 Mikki S, Ruwehy H A A, Gjesdal ? L, et al. Filter bubbles in interdisciplinary research: a case study on climate and society[J]. Library Hi Tech, 2018, 36(2): 225-236. 39 Wheeler-Mackta H J, Allen D P, Campo J R. The effects of music recommendation engines on the filter bubble phenomenon[EB/OL]. [2020-06-15]. https://digitalcommons.wpi.edu/iqp-all/3086. 40 Bozdag E, Gao Q, Houben G J, et al. Does offline political segregation affect the filter bubble? An empirical analysis of information diversity for Dutch and Turkish Twitter users[J]. Computers in Human Behavior, 2014, 41: 405-415. 41 Holone H. The filter bubble and its effect on online personal health information[J]. Croatian Medical Journal, 2016, 57(3): 298-301. 42 Powers E. My news feed is filtered?[J]. Digital Journalism, 2017, 5(10): 1315-1335. 43 Ribeiro B, Gon?alves C, Pereira F, et al. Digital bubbles: living in accordance with personalized seclusions and their effect on critical thinking[C]// Proceedings of the World Conference on Information Systems and Technologies. Cham: Springer, 2019: 463-471. 44 Burbach L, Halbach P, Ziefle M, et al. Bubble trouble: strategies against filter bubbles in online social networks[C]// Proceedings of International Conference on Human-Computer Interaction. Cham: Springer, 2019: 441-456. 45 Ayre L, Craner J. Algorithms: avoiding the implementation of institutional biases[J]. Public Library Quarterly, 2018, 37(3): 341-347. 46 Bozdag E, van den Hoven J. Breaking the filter bubble: democracy and design[J]. Ethics and Information Technology, 2015, 17(4): 249-265. 47 Perra N, Rocha L E C. Modelling opinion dynamics in the age of algorithmic personalisation[J]. Scientific Reports, 2019, 9: 7261. 48 Liao Q V, Fu W. Beyond the filter bubble: interactive effects of perceived threat and topic involvement on selective exposure to information[C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2013: 2359-2368. 49 Menchaca F. The future is in doubt: librarians, publishers, and networked learning in the 21st century[J]. Journal of Library Administration, 2012, 52(5): 396-410. 50 Prakash S. Filter bubble: how to burst your filter bubble[J]. International Journal of Engineering and Computer Science, 2016, 5(10): 18321-18325. 51 Salvador Casara B G, Suitner C, Bettinsoli M L. Viral suspicions: vaccine hesitancy in the Web 2.0[J]. Journal of Experimental Psychology: Applied, 2019, 25(3): 354-371. 52 Bozdag E, Timmermans J. Values in the filter bubble: ethics of personalization algorithms in cloud computing[C]// Proceedings of the 1st International Workshop on Values in Design-Building Bridges between RE, HCI and Ethics, 2011: 7-15. 53 Kanai A, McGrane C. Feminist filter bubbles: ambivalence, vigilance and labour[J/OL]. Information, Communication & Society, (2020-05-12). https://doi.org/10.1080/1369118X.2020.1760916. 54 Ott K. Social media and feminist values: aligned or maligned?[J]. Frontiers: A Journal of Women Studies, 2018, 39(1): 93-111. 55 Faridani S, Bitton E, Ryokai K, et al. Opinion space: a scalable tool for browsing online comments[C]// Proceedings of the 28th International Conference on Human Factors in Computing Systems. New York: ACM Press, 2010: 1175-1184. 56 Kriplean T, Toomim M, Morgan J, et al. REFLECT: aupporting active listening and grounding on the Web through restatement[C]// Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work. New York: ACM Press, 2011: 791-802. 57 Kriplean T, Morgan J, Freelon D, et al. Supporting reflective public thought with ConsiderIt[C]// Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work. New York: ACM Press, 2012: 265-274. 58 Freelon D G, Kriplean T, Morgan J, et al. Facilitating diverse political engagement with the living voters guide[J]. Journal of Information Technology & Politics, 2012, 9(3): 279-297. 59 Xing X Y, Meng W, Doozan D, et al. Exposing inconsistent web search results with bobble[C]// Proceedings of the International Conference on Passive and Active Network Measurement. Cham: Springer, 2014: 131-140. 60 Tabrizi S A, Shakery A. Perspective-based search: a new paradigm for bursting the information bubble[J]. FACETS, 2019, 4(1): 350-388. 61 Nagulendra S, Vassileva J. Understanding and controlling the filter bubble through interactive visualization: a user study[C]// Proceedings of the 25th ACM Conference on Hypertext and Social Media. New York: ACM Press, 2014: 107-115. 62 Munson S A, Lee S Y, Resnick P, et al. Encouraging reading of diverse political viewpoints with a browser widget[C]// Proceedings of the 7th International AAAI Conference on Weblogs and Social Media. Palo Alto: AAAI Press, 2013: 419-428. 63 Resnick P, Garrett R K, Kriplean T, et al. Bursting your (filter) bubble: strategies for promoting diverse exposure[C]// Proceedings of the 2013 Conference on Computer Supported Cooperative Work. New York: ACM Press, 2013: 95-100. 64 Chakraborty A, Ghosh S, Ganguly N, et al. Optimizing the recency-relevance-diversity trade-offs in non-personalized news recommendations[J]. Information Retrieval Journal, 2019, 22(5): 447-475. 65 Erdelez S, Makri S. Information encountering re-encountered: a conceptual re-examination of serendipity in the context of information acquisition[J]. Journal of Documentation, 2020, 76(3): 731-751. 66 Jiang T T, Fu S T, Song E M. Toward a description framework of information encountering experiences: guidance for diarists in story telling[J]. Journal of Documentation, 2020, 76(4): 807-827. 67 De Pessemier T, Dooms S, Vanhecke K, et al. Context and activity recognition for personalized mobile recommendations[C]// Proceedings of the International Conference on Web Information Systems and Technologies. Heidelberg: Springer, 2014: 243-262. 68 McCay‐Peet L, Toms E G. Investigating serendipity: how it unfolds and what may influence it[J]. Journal of the Association for Information Science and Technology, 2015, 66(7): 1463-1476. 69 Maccatrozzo V. Burst the filter bubble: using semantic web to enable serendipity[C]// Proceedings of the International Semantic Web Conference. Heidelberg: Springer, 2012: 391-398. 70 Symeonidis P, Coba L, Zanker M. Counteracting the filter bubble in recommender systems: novelty-aware matrix factorization[J]. Intelligenza Artificiale, 2019, 13(1): 37-47. 71 Yokoyama M, Ma Q. Topic model-based freshness estimation towards diverse tweet recommendation[C]// Proceedings of the 2019 IEEE International Conference on Big Data and Smart Computing. IEEE, 2019: 1-8. 72 Lunardi G M. Representing the filter bubble: towards a model to diversification in news[C]// Proceedings of the 38th International Conference on Conceptual Modeling. Cham: Springer, 2019: 239-246. 73 Bright J. Explaining the emergence of political fragmentation on social media: the role of ideology and extremism[J]. Journal of Computer-Mediated Communication, 2018, 23(1): 17-33. 74 Kotkov D, Wang S Q, Veijalainen J. A survey of serendipity in recommender systems[J]. Knowledge-Based Systems, 2016, 111: 180-192. 75 Paltemaa L, Vuori J A, Mattlin M, et al. Meta-information censorship and the creation of the Chinanet Bubble[J]. Information, Communication & Society, 2020, 23(14): 2064-2080.