Knowledge Evolution Analysis of ESI Research Fronts Based on Knowledge Element Migration
Sun Zhen1, Leng Fuhai2
1.Institute of Information Management, Shandong University of Technology, Zibo 255000 2.Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190
摘要在前期研究的基础之上,本文提出了一种基于知识元迁移的ESI(essential science indicators)研究前沿知识演进分析方法,通过对研究前沿中的知识元迁移现象,进行定量分析和迁移程度计算,从语义分析和知识计算的角度,进一步探索研究前沿的演进机理。借助命名实体识别、词袋模型、PLDA(parallel latent Dirichlet allocation)主题模型、信息熵算法等文本语义挖掘和自然语言处理技术,通过设计贡献度指数CVI(contribution value index)和迁移度指数MVI(migration value index)两种计量指标,探究知识元的迁移规律。研究结果表明,以前沿主题中的个体知识元作为分析对象,可以从最为直接、最为细粒度的视角,对研究前沿随时间变化时内在知识结构特征的变迁规律进行挖掘,揭示领域知识要素在不同时期的演化状态,能够更为深入地回答研究前沿的追踪发展变迁问题,为面向学科前沿的科技情报工作提供方法论参考。
孙震, 冷伏海. 一种基于知识元迁移的ESI研究前沿知识演进分析方法[J]. 情报学报, 2021, 40(10): 1027-1042.
Sun Zhen, Leng Fuhai. Knowledge Evolution Analysis of ESI Research Fronts Based on Knowledge Element Migration. 情报学报, 2021, 40(10): 1027-1042.
1 National Institute of Standards and Technology. Big Data R&D Initiative[EB/OL]. [2020-09-17]. https://www.nist.gov/system/files/documents/itl/ssd/is/NIST-BD-Platforms-05-Big-Data-Wact-lar-slides.pdf. 2 贺德方. 我国科技情报行业发展战略与发展路径的思考[J]. 情报学报, 2007, 26(4): 483-487. 3 李萌. 大数据时代对我国科技情报事业发展的新思考[J]. 中国软科学, 2016(12): 1-4. 4 戴国强. 推进竞跑阶段的创新情报研究[J]. 情报学报, 2019, 38(8): 771-777. 5 孙震, 冷伏海, 张晋辉. 基于知识元的科学计量方法及其实证研究[J]. 图书情报工作, 2017, 61(23): 89-99. 6 孙震, 冷伏海. 基于知识元的新型科学计量范式探析[J]. 情报学报, 2017, 36(6): 555-564. 7 孙震, 冷伏海. 一种基于知识元共现的ESI研究前沿知识演进分析方法[J]. 情报学报, 2018, 37(11): 1095-1113. 8 Einstein A. Approximate integration of the field equations of gravitation[J]. Sitzungsber. K. Preuss. Akad. Wiss, 1916(1): 688-696. 9 Einstein A. On gravitational waves[J]. Sitzungsber. K. Preuss. Akad. Wiss, 1918(1): 154-167. 10 Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116: 061102. 11 California Institute of Technology. LIGO Laboratory[EB/OL]. [2020-09-17]. https://www.ligo.caltech.edu/. 12 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. 13 Newman D, Smyth P, Welling M, et al. Distributed inference for latent Dirichlet allocation[C]// Proceedings of the 21st International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates, 2008: 1081-1088. 14 Wang Y, Bai H J, Stanton M, et al. PLDA: parallel latent Dirichlet allocation for large-scale applications[C]// Proceedings of the 5th International Conference on Algorithmic Aspects in Information and Management. Heidelberg: Springer, 2009: 301-314. 15 王旭仁, 姚叶鹏, 冉春风, 等. 一种并行LDA主题模型建立方法研究[J]. 北京理工大学学报, 2013, 33(6): 590-593. 16 高阳, 严建峰, 刘晓升. 朴素并行LDA[J]. 计算机科学, 2015, 42(6): 243-246. 17 Shannon C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(3): 379-423. 18 姚鑫, 丁艳丽, 张晓丹, 等. 钙钛矿太阳电池综述[J]. 物理学报, 2015, 64(3): 145-152. 19 Xiao J W, Shi C B, Zhou C X, et al. Contact engineering: electrode materials for highly efficient and stable perovskite solar cells[J]. Solar RRL, 2017, 1(9): 1700082. 20 阙亚萍, 翁坚, 胡林华, 等. 二氧化钛在钙钛矿太阳电池中的应用[J]. 化学进展, 2016, 28(1): 40-50. 21 Bi D Q, Boschloo G, Schwarzmüller S, et al. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells[J]. Nanoscale, 2013, 5(23): 11686-11691. 22 Son D Y, Im J H, Kim H S, et al. 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system[J]. The Journal of Physical Chemistry C, 2014, 118(30): 16567-16573. 23 Liu D Y, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nature Photonics, 2014, 8(2): 133-138. 24 Leijtens T, Eperon G E, Pathak S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nature Communications, 2013, 4: 2885. 25 Cai B, Xing Y D, Yang Z, et al. High performance hybrid solar cells sensitized by organolead halide perovskites[J]. Energy & Environmental Science, 2013, 6(5): 1480-1485. 26 Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237. 27 Yin W J, Yan Y F, Wei S H. Anomalous alloy properties in mixed halide perovskites[J]. The Journal of Physical Chemistry Letters, 2014, 5(21): 3625-3631. 28 楼孙棋, 宣曈曈, 郁彩艳, 等. 无机铅卤钙钛矿纳米晶的合成、性能及应用[J]. 应用化学, 2016, 33(9): 977-993. 29 孙震. 面向研究前沿演进分析应用的知识元计量方法探索[D]. 北京: 中国科学院大学, 2018.