黄文彬, 白浩东. 基于自动构建术语分类体系的公司划分研究——以新三板公司主营业务概念为例[J]. 情报学报, 2021, 40(5): 479-488.
Huang Wenbin, Bai Haodong. The Study of Company Screening Method Based on Automatic Taxonomy Construction. 情报学报, 2021, 40(5): 479-488.
1 Alford A W. The effect of the set of comparable firms on the accuracy of the price-earnings valuation method[J]. Journal of Accounting Research, 1992, 30(1): 94-108. 2 Bhojraj S, Lee C M C. Who is my peer? A valuation-based approach to the selection of comparable firms[J]. Journal of Accounting Research, 2002, 40(2): 407-439. 3 Phillips R L, Ormsby R. Industry classification schemes: an analysis and review[J]. Journal of Business & Finance Librarianship, 2016, 21(1): 1-25. 4 Barra M. Global industry classification standard (GICS)[R]. New York: Standard & Poor’s, 2009. 5 Bhojraj S, Lee C M C, Oler D K. What’s my line? A comparison of industry classification schemes for capital market research[J]. Journal of Accounting Research, 2003, 41(5): 745-774. 6 上海申银万国证券研究所有限公司. 申银万国行业分类标准[EB/OL]. [2018-12-08]. http://www.swsindex.com/idx0530.aspx. 7 全国中小公司股份转让系统有限责任公司. 挂牌公司投资型行业分类指引[EB/OL]. (2018-01-03) [2018-12-08]. http://www.neeq.com.cn/uploads/1/file/public/201801/20180103150009_p13ukun0hq.docx. 8 De Franco G, Kothari S P, Verdi R S. The benefits of financial statement comparability[J]. Journal of Accounting Research, 2011, 49(4): 895-931. 9 郭峰, 徐玉生, 陈晓云, 等. 基于信息提取的面向行业应用文本分类算法[J]. 清华大学学报(自然科学版), 2005, 45(S1): 1810-1813. 10 Hoberg G, Phillips G. Product market synergies and competition in mergers and acquisitions: a text-based analysis[J]. The Review of Financial Studies, 2010, 23(10): 3773-3811. 11 Hoberg G, Phillips G. Text-based network industries and endogenous product differentiation[J]. Journal of Political Economy, 2016, 124(5): 1423-1465. 12 Tetlock P C, Saar-Tsechansky M, Macskassy S. More than words: quantifying language to measure firms' fundamentals[J]. The Journal of Finance, 2008, 63(3): 1437-1467. 13 曹四华. 基于LDA主题模型上市公司年报文本知识发现[D]. 北京: 中国地质大学, 2016. 14 Wang C Y, He X F, Zhou A Y. A short survey on taxonomy learning from text corpora: issues, resources and recent advances[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 1190-1203. 15 Hearst M A. Automatic acquisition of hyponyms from large text corpora[C]// Proceedings of the 14th Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 1992, 2: 539-545. 16 Vivaldi J, Màrquez L, Rodríguez H. Improving term extraction by system combination using boosting[C]// Proceedings of the European Conference on Machine Learning. Heidelberg: Springer, 2001: 515-526. 17 Fu R J, Guo J, Qin B, et al. Learning semantic hierarchies via word embeddings[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2014, 1: 1199-1209. 18 de Knijff J, Frasincar F, Hogenboom F. Domain taxonomy learning from text: the subsumption method versus hierarchical clustering[J]. Data & Knowledge Engineering, 2013, 83: 54-69. 19 杜慧平, 何琳, 侯汉清. 基于聚类分析的自然语言叙词表的自动构建[J]. 国家图书馆学刊, 2007, 16(3): 44-49. 20 Meijer K, Frasincar F, Hogenboom F. A semantic approach for extracting domain taxonomies from text[J]. Decision Support Systems, 2014, 62: 78-93. 21 Choi M J, Tan V Y F, Anandkumar A, et al. Learning latent tree graphical models[J]. Journal of Machine Learning Research, 2011, 12(4): 1771-1812. 22 Elkan C, Noto K. Learning classifiers from only positive and unlabeled data[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2008: 213-220. 23 du Plessis M C, Niu G, Sugiyama M. Analysis of learning from positive and unlabeled data[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014, 1: 703-711. 24 Givoni I E, Chung C, Frey B J. Hierarchical affinity propagation[C]// Proceeding of the 27th Conference on Uncertainty in Artificial Intelligence. Barcelona: AUAI Press, 2011: 238-246.