|
|
Identification of Key Core Technologies Based on Matrix Profile and Louvain Community Discovery Algorithms |
Wan Xiaoji1,2, Lai Jing1, Mou Yingxi1, Zhu Zhiguo3, Zhang Liping1 |
1.College of Business Administration, Huaqiao University, Quanzhou 362021 2.Oriental Enterprise Management Research Center, Huaqiao University, Quanzhou 362021 3.School of Management Science and Engineering, Dongbei University of Finance and Economics, Dalian 116025 |
|
|
Abstract Aiming at the problems of existing key core technology identification methods, such as less consideration of the time factor and more difficulty in interpreting the identification results, this study proposes a key core technology identification method based on the matrix profile (MP) and Louvain community detection algorithm. This method is based on International Patent Classification (IPC) subclass weights and word frequency analysis to identify hot technology topics in the target domain. Combining the high-frequency IPC subclass time series and the MP algorithm to construct the technology association network, the Louvain algorithm and social network analysis method are used to identify the initial key core technology topics in the target domain. Based on the features, the key core technology topics are screened, and the key core technologies in the target field are identified through a deep interpretation of the technology association subnetwork, original patent data, relevant policy documents, and journal literature. Through data processing and mining of granted patents in the field of logistics from 2014 to 2023 in the incoPat patent database, this method is noted to effectively identify the key core technologies in the field of logistics that not only helps to promote technological breakthroughs and innovations in the industry but also enhances the country’s position in the global industrial chain and value chain.
|
Received: 03 September 2024
|
|
|
|
1 任佳妮, 张薇, 杨阳, 等. “人工智能+医疗”新兴技术识别研究——以医疗机器人为例[J]. 情报杂志, 2021, 40(12): 45-50. 2 Mariani M S, Medo M, Lafond F. Early identification of important patents: design and validation of citation network metrics[J]. Technological Forecasting and Social Change, 2019, 146: 644-654. 3 Zhang Y, Qian Y, Huang Y, et al. An entropy-based indicator system for measuring the potential of patents in technological innovation: rejecting moderation[J]. Scientometrics, 2017, 111(3): 1925-1946. 4 陈旭, 施国良. 基于情景分析和专利地图的企业技术预见模式[J]. 情报杂志, 2016, 35(5): 102-107, 132. 5 詹文青, 封丽, 黄潇霏. 专利布局视角下企业核心专利识别研究[J]. 情报理论与实践, 2022, 45(8): 115-120. 6 Wang H Y, Sun B. Dominant technology identification of wind power generation[J]. Current Science, 2019, 116(9): 1525-1532. 7 赵建, 梁爽. 关键核心技术识别方法研究进展[J]. 情报杂志, 2024, 43(4): 68-77. 8 李瑞茜, 陈向东. 基于专利共类的关键技术识别及技术发展模式研究[J]. 情报学报, 2018, 37(5): 495-502. 9 毛荐其, 杜艳婷, 苗成林, 等. 基于专利共类的关键核心技术识别模型构建及应用——以光刻技术为例[J]. 情报杂志, 2022, 41(11): 48-54. 10 王新新, 钱国栋, 袁宇翔, 等. 基于专利共类的海洋溢油污染防治关键核心技术主题识别[J]. 环境生态学, 2024, 6(4): 65-70. 11 戚筠, 唐恒, 石俊国. 基于小世界网络特性的核心技术识别研究——以石墨烯为例[J]. 情报杂志, 2020, 39(2): 50-55. 12 陶治宇, 刘小平, 梁爽, 等. 基于主路径分析和引文文本挖掘的关键核心技术基础研究结构识别[J]. 情报杂志, 2025, 44(2): 72-81. 13 Lee M, Kim Y, Jang W. Patent citation network analysis[J]. Korean Journal of Applied Statistics, 2016, 29(4): 613-625. 14 付振康, 朱庆华, 柳炳祥, 等. 专利视域下“卡脖子”关键技术识别及突破策略——以OLED技术领域为例[J]. 情报杂志, 2024, 43(5): 106-115. 15 Yang W, Xu H D, Wang S. A limit citation network for identification of core technologies: a case of extreme ultraviolet lithography technology[J]. Technology Analysis & Strategic Management, 2024, 36(10): 2561-2576. 16 王良, 李牧南. 基于融合新闻影响力和图注意力网络聚类方法的颠覆性技术识别[J]. 图书情报工作, 2024, 68(15): 27-43. 17 李维思, 谭力铭, 章国亮, 等. 基于多源信息融合的产业链关键核心技术主题识别研究——以人工智能领域为例[J]. 信息资源管理学报, 2022, 12(1): 116-126. 18 冯立杰, 周炜, 王金凤, 等. 基于SAO语义分析的多维技术演化路径与技术创新机会识别研究[J]. 情报学报, 2022, 41(11): 1149-1160. 19 李欣, 谢前前, 黄鲁成, 等. 基于SAO结构语义挖掘的新兴技术演化轨迹研究[J]. 科学学与科学技术管理, 2018, 39(1): 17-31. 20 张延禄, 张方亮, 杨乃定. 关键核心专利视角下集成电路协同创新网络关键节点识别[J]. 软科学, 2024, 38(8): 85-93. 21 马永红, 孔令凯, 林超然, 等. 基于专利挖掘的关键共性技术识别研究[J]. 情报学报, 2020, 39(10): 1093-1103. 22 邓岩, 陈燕娟. 种源“卡脖子”问题的识别、成因与破解路径研究——以农作物种业为例[J]. 农业现代化研究, 2022, 43(1): 20-28. 23 Li H L, Wu X L, Wan X J, et al. Time series clustering via matrix profile and community detection[J]. Advanced Engineering Informatics, 2022, 54: 101771. 24 Blondel V, Guillaume J L, Lambiotte R. Fast unfolding of communities in large networks: 15 years later[J]. Journal of Statistical Mechanics: Theory and Experiment, 2024, 2024(10): 10R001. 25 江瑶, 陈旭, 胡斌. “卡脖子”关键核心技术两阶段漏斗式甄选模型构建及应用研究[J]. 情报杂志, 2023, 42(3): 94-101. 26 Noh H, Song Y K, Lee S. Identifying emerging core technologies for the future: case study of patents published by leading telecommunication organizations[J]. Telecommunications Policy, 2016, 40(10/11): 956-970. 27 张玉臣, 谭礼. 关键核心技术的概念界定、特征辨析及突破路径[J]. 中国科技论坛, 2023(2): 20-29. 28 胡旭博, 原长弘. 关键核心技术: 概念、特征与突破因素[J]. 科学学研究, 2022, 40(1): 4-11. 29 黄晓林, 严安平, 李维思, 等. 面向未来产业构建的氢能产业关键核心技术识别方法研究[J]. 科技管理研究, 2024, 44(14): 135-143. 30 梁帅, 高继平. 产业技术结构与“卡脖子”技术特征——以高端数控机床为例[J]. 科技导报, 2021, 39(24): 75-83. 31 杨武, 王爽. 特征分析视角下核心技术动态趋势识别——以光刻技术为例[J]. 情报杂志, 2021, 40(12): 36-44. 32 罗立国, 林文广. 核心专利挖掘指标研究——以新能源汽车装置领域为例[J]. 科技管理研究, 2018, 38(18): 151-156. 33 陈恒, 祁宪超, 张妍. 我国区域应急物流反应能力对经济增长的影响效应[J]. 灾害学, 2024, 39(3): 139-147, 172. 34 于赫年, 白桦, 李超. 仓储式多AGV系统的路径规划研究及仿真[J]. 计算机工程与应用, 2020, 56(2): 233-241. 35 袁文斌, 黄山, 杨义银, 等. 面向绿色物流包装的可生物降解薄膜研究现状[J]. 包装工程, 2022, 43(21): 58-68. |
|
|
|