|
|
Visualization of Sequential Characteristics of Web Behaviors of College Students |
Yan Chengxi, Wang Jun |
Department of Information Management, Peking University, Beijing 100871 |
|
|
Abstract In the information dependent environment, research on web behaviors is an important topic with widespread needs, especially concerning the analysis and research of online behaviors of college students. College students are an important core group and a new force among Chinese netizens. There is great practical significance and social value to exploring and grasping Chinese college students° characters such as user behavior, interests, and needs. Visual analysis can directly display the overall distribution characteristics of user behavior and lay the foundation for further in-depth analyses. In this study, the college students° network access logs are considered as the analysis object to indicate the features of group behavior under multiple time granularities, namely, term, week, and hour. Meanwhile, on the basis of research using Markov chain, Gini-index, H-index, and other feature indicators, this work attempts to reveal college students° online characters of sequential behavior, user interest, and needs in various hour intervals, which provides a scientific reference to understand the nuances of college students' online life and support enterprise personalized services under the big data environment. In particular, H-index is applied to the website ranking algorithm of user interest and shows the value of classical informetrics analysis in the process of analysis and application of online user behavior, thus promoting the integration of different methods in applied information science.
|
Received: 15 December 2017
|
|
|
|
[1] 中国互联网络信息中心. 第40次《中国互联网络发展状况统计报告》[EB/OL]. http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/ 201708/t20170803_69444.htm#. [2] Malik A, Mahmood K.Web search behavior of university students: a case study at University of the Punjab[J]. Webology, 2009, 6(2): 6. [3] 王庆稳, 邓小昭. 网络用户信息浏览行为中的心理模式研究[J]. 图书情报知识, 2010(5): 93-96. [4] Li D, Browne G J, Wetherbe J C.Online consumers’ switching behavior: A buyer-seller relationship perspective[J]. Journal of Electronic Commerce in Organizations, 2009, 5(1): 30-42. [5] Bridges F, Appel L, Grossklags J.Young adults’ online participation behaviors: an exploratory study of Web 2.0 use for political engagement[J]. Information Polity, 2012, 17(2): 163-176. [6] Lwo L L S. College students’ uses and perceptions of World Wide Web in an information-seeking environment[J]. Journal of Library and Information Science, 2005, 31(1): 87-100. [7] Tian J B, Ying G L.Web user interest extraction and applied research in universities[C]// Proceedings of the 2010 International Conference on Information Science and Engineering. San Francisco: IEEE, 2011: 5535-5537. [8] Nicholas D, Huntington P, Jamali H R, et al.Student digital information‐seeking behaviour in context[J]. Journal of Documentation, 2009, 65(1): 106-132. [9] Rafique G M. Personal information sharing behavior of university students via online social networks[J]. Library Philosophy and Practice, 2017: Paper 1454. [10] O’ Farrell M, Bates J.Student information behaviours during group projects: A study of LIS students in University College Dublin, Ireland[J]. Aslib Proceedings: New Information Perspectives, 2009, 61(3): 302-315. [11] Auer N J, Krupar E M.Mouse click plagiarism: The role of technology in plagiarism and the librarian’s role in combating it[J]. Library Trends, 2001, 49(3): 415-432. [12] Ding R, Ma F.Assessment of university student web searching competency by a task‐based online test: A case study at Wuhan University, China[J]. Electronic Library, 2013, 31(3): 359-375. [13] Wu D, He D, Yue Z, et al.Undergraduate students’ interaction with online information resources in their academic tasks: A comparative study[J]. Aslib Proceedings, 2012, 64(6): 615-640. [14] 吴敏琦. 大学生网络学术信息搜寻行为研究——基于大学本科生的调查分析[J]. 情报科学, 2013, 13(2): 92-96. [15] 周晓英, 蔡文娟. 大学生网络健康信息搜寻行为模式及影响因素[J]. 情报资料工作, 2014(4): 50-55. [16] Taneichi J, Itsumura H.Web searching behavior: Constructing a process model of information evaluation based on a survey of college students[J]. Library and Information Science, 2006(55): 1-23. [17] 尹小红. 网络环境下大学生日常生活信息搜寻行为模式研究——基于广州地区的实证调查数据[J]. 图书情报工作, 2011, 55(13): 100-103. [18] Sife A S. Web search behaviour of postgraduate students at Sokoine University of Agriculture, Tanzania[J]. Library Philosophy and Practice, 2013: Paper 897. [19] Joo S, Choi N.Factors affecting undergraduates’selection of online library resources in academic tasks[J]. Library Hi Tech, 2015, 33(2): 114-117. [20] 李国靖, 周强. 移动互联网环境下大学生信息消费行为模式研究[J]. 科技经济导刊, 2017(14): 199-201. [21] Yilmaz H, Senkul P.Using ontology and sequence information for extracting behavior patterns from Web navigation logs[C]// Proceedings of the 2010 IEEE International Conference on Data Mining Workshops. Washington, DC: IEEE Computer Society, 2010: 549-556. [22] 翟延祥, 金明华, 杨琳. 90后大学生的网络信息行为研究——以南京航空航天大学为例[J]. 图书情报导刊, 2010, 20(1): 180-183. [23] 汪强兵, 章成志. 融合内容与用户手势行为的用户画像构建系统设计与实现[J]. 数据分析与知识发现, 2017, 1(2): 80-86. [24] Wang L, Meinel C.Mining the students’ learning interest in browsing Web-streaming lectures[C]/ /Proceedings of the 2007 Computational Intelligence and Data Mining. San Francisco: IEEE, 2007: 194-201. [25] Thomas J J, Cook K A.Visual representations and interactions technologies[M]// Illuminating the Path: The Research and Development Agenda for Visual Analytics. USA: IEEE Press, 2005: 69-104. [26] Tang J C, Hill R.Rhythm modeling, visualizations and applications[C]// Proceedings of the ACM Symposium on User Interface Software and Technology. New York: ACM Press, 2010: 11-20. [27] Li W, Cao G, Qin T, et al.A hierarchical method for user’s behavior characteristics visualization and special user identification[C]// Proceedings of the 19th IEEE International Conference on Networks. IEEE, 2013: 1-5. [28] 段建勇, 魏晓亮, 张梅, 等. 基于网络日志的用户兴趣模型构建[J]. 情报科学, 2013(9): 78-82. [29] Bates M J.The design of browsing and berrypicking techniques for the online search interface[J]. Online Information Review, 1989, 13(5): 407-424. [30] Gonz J.The design of browsing and berrypicking techniques for the online search iassociations with Internet use characteristics and clinical symptoms[J]. Computers in Human Behavior, 2014, 31(2): 151-158. [31] Baf M R, Paić M R, Bočev M.Uses and motives for playing online video games—Specificities of university students[J]. Didactica Slovenica Pedagoška Obzorja, 2014, 29(2): 117-130. [32] 雷内•托姆. 突变论: 思想和应用[M]. 周仲良, 译. 上海: 上海译文出版社, 1989, 215-280. [33] Kleinberg J.Bursty and hierarchical structure in streams[C]// Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2002: 91-101. [34] Vinkler P.Eminence of scientists in the light of the h-index and other scientometric indicators[J]. Journal of Information Science, 2007, 33(4): 129-130. [35] 高小强, 赵星. h指数与论文总被引C的幂律关系[J]. 情报学报, 2010, 29(3): 506-510. [36] Bornmann L, Mutz R, Daniel H D.Are there better indices for evaluation purposes than the h index? A comparison of nine different variants of the h index using data from biomedicine[J]. Journal of the Association for Information Science and Technology, 2008, 59(5): 830-837. [37] Schubert A.Using the h-index for assessing single publications[J]. Scientometrics, 2009, 78(3): 559-565. [38] Cothey V.A longitudinal study of World Wide Web users’ information-searching behavior[J]. Journal of the American society for information science and technology, 2002, 53(2): 67-78. [39] 陆思婷. 实用软件社交化对大学生人际交往关系的影响——以在线直播软件为例[J]. 数字传媒研究, 2016, 33(10): 42-46. |
|
|
|