|
|
Early Identification Strategies for Disruptive Technologies through the Lens of Technology Life Cycle |
Hou Yanhui, Chen Rong, Wang Jiakun |
College of Economics and Management, Shandong University of Science and Technology, Qingdao 266590 |
|
|
Abstract This study proposes a method for the early identification of disruptive technologies that considers the technology life cycle stages and feature heterogeneity. It addresses the problem of ignoring technology evolution features in the current disruptive technology identification process. First, Sentence-BERT (sentence bidirectional encoder representation from transformers) is used to vectorize patent abstracts. Second, a filtering identification system is constructed: the first layer employs the local outlier factor with constraint integration (LOCI) anomaly detection algorithm to identify and classify outlier patents; the second layer uses an S-curve life cycle identification to filter patents in the maturity stage; the third layer measures the innovativeness of patents in the budding stage; and the fourth layer evaluates the disruptive nature of the patent text and technology reporting data in the growth stage to finalize the filtering process. Finally, the field of quantum information technology is used as a case study to illustrate this method. The study identifies three disruptive themes in the germination and growth stages, which align with the authoritative reports, verifying the feasibility and effectiveness of the proposed method.
|
Received: 04 June 2024
|
|
|
|
1 Bower J L, Christensen C M. Disruptive technologies: catching the wave[J]. Harvard Business Review, 1995, 73(1): 43-53. 2 Rafii F, Kampas P J. How to identify your enemies before they destroy you[J]. Harvard Business Review, 2002, 80(11): 115-123, 134. 3 Gilbert C. The disruption opportunity[J]. MIT Sloan Management Review, 2003, 44(4): 27-32. 4 张晓林. 颠覆数字图书馆的大趋势[J]. 中国图书馆学报, 2011, 37(5): 4-12. 5 Guttentag D. Airbnb: disruptive innovation and the rise of an informal tourism accommodation sector[J]. Current Issues in Tourism, 2015, 18(12): 1192-1217. 6 Shibata N, Kajikawa Y, Takeda Y, et al. Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications[J]. Technological Forecasting and Social Change, 2011, 78(2): 274-282. 7 徐硕, 李静鸿, 安欣. 基于专利术语的颠覆性技术识别及实证研究[J]. 图书情报工作, 2024, 68(2): 62-72. 8 Buchanan B, Corken R. A toolkit for the systematic analysis of patent data to assess a potentially disruptive technology[R]. London: Intellectual Property Office, 2010. 9 Chen C, Zhang J, Guo R S. The D-day, V-day, and bleak days of a disruptive technology: a new model for ex-ante evaluation of the timing of technology disruption[J]. European Journal of Operational Research, 2016, 251(2): 562-574. 10 苏敬勤, 刘建华, 王智琦, 等. 颠覆性技术的演化轨迹及早期识别——以智能手机等技术为例[J]. 科研管理, 2016, 37(3): 13-20. 11 李乾瑞, 郭俊芳, 黄颖, 等. 基于专利计量的颠覆性技术识别方法研究[J]. 科学学研究, 2021, 39(7): 1166-1175. 12 Chen X L, Han T. Disruptive technology forecasting based on gartner hype cycle[C]// Proceedings of the 2019 IEEE Technology & Engineering Management Conference. Piscataway: IEEE, 2019: 1-6. 13 苑朋彬, 邢晓昭. 专利知识流动视角下的颠覆性技术方向识别研究——以6G太赫兹通信技术领域为例[J]. 情报杂志, 2023, 42(11): 142-146. 14 王海军, 于佳文. 基于专利发展路径的颠覆性技术识别: 以智能语音领域为例[J]. 科技管理研究, 2022, 42(6): 170-181. 15 张金柱, 王秋月, 仇蒙蒙. 颠覆性技术识别研究进展综述[J]. 数据分析与知识发现, 2022, 6(7): 12-31. 16 周云泽, 闵超. 基于LDA模型与共享语义空间的新兴技术识别——以自动驾驶汽车为例[J]. 数据分析与知识发现, 2022, 6(2/3): 55-66. 17 马永红, 孔令凯, 林超然, 等. 基于异构数据的颠覆性技术识别研究——以智能制造装备领域为例[J]. 现代情报, 2022, 42(7): 92-104. 18 Liu X W, Wang X Z, Lyu L C, et al. Identifying disruptive technologies by integrating multi-source data[J]. Scientometrics, 2022, 127(9): 5325-5351. 19 谭晓, 西桂权, 苏娜, 等. 科学—技术—项目联动视角下颠覆性技术识别研究[J]. 情报杂志, 2023, 42(2): 82-91. 20 侯广辉, 廖桂铭, 王刚. 基于突变级数的颠覆性技术识别模型构建及实证研究[J]. 情报杂志, 2021, 40(10): 7-14. 21 刘柳, 吴新年. 颠覆性技术识别方法研究进展述评[J]. 数字图书馆论坛, 2022(1): 2-9. 22 赵玉桐, 杨建林. 基于跨领域专利的颠覆性技术识别研究——以人工智能领域为例[J]. 情报理论与实践, 2023, 46(3): 174-182. 23 刘忠宝, 康嘉琦, 张静. 基于主题突变检测的颠覆性技术识别——以无人机技术领域为例[J]. 科技导报, 2020, 38(20): 97-105. 24 马铭, 王超, 张伟然, 等. 突变视角下潜在颠覆性技术识别与分析方法研究[J]. 情报理论与实践, 2022, 45(3): 157-164, 156. 25 陈育新, 李健, 韩毅. 核心—边缘理论视角下的颠覆性技术识别研究[J]. 情报理论与实践, 2022, 45(8): 121-129. 26 熊焰, 张凌恺, 陈旭, 等. 基于“突变—演化” 模型的颠覆性技术识别方法及应用[J]. 情报杂志, 2023, 42(12): 119-126, 152. 27 李牧南, 赖华鹏, 王良, 等. 基于主题强度突变检测的颠覆性技术识别[J]. 情报杂志, 2023, 42(12): 111-118. 28 陈育新, 卢俊, 韩毅. 基于专利文献的颠覆性技术识别研究——以人工智能为例[J]. 情报学报, 2022, 41(11): 1124-1133. 29 宋欣娜, 郭颖, 席笑文. 基于专利文献的多指标新兴技术识别研究[J]. 情报杂志, 2020, 39(6): 76-81, 88. 30 储节旺, 李佳轩, 安怡然. 基于专利分析的颠覆性技术演化与预测研究——以量子信息技术为例[J]. 科技进步与对策, 2023, 40(22): 130-140. 31 刘俊婉, 庞博, 徐硕. 基于弱信号的颠覆性技术早期识别研究[J]. 情报学报, 2023, 42(12): 1395-1411. 32 吴瑞鹏, 李勇男, 刘帅, 等. 基于DTM的美国人工智能战略热点主题及演化分析[J]. 情报杂志, 2023, 42(12): 134-143. 33 邱均平, 胡博, 徐中阳, 等. 基于DTM模型的国内外话语权研究主题挖掘及比较分析[J]. 情报理论与实践, 2023, 46(2): 24-34. 34 贺超城, 黄茜, 李欣儒, 等. 元宇宙的冷与热——融合BERT与动态主题模型的微博文本分析[J]. 数据分析与知识发现, 2023, 7(9): 25-38. 35 吕鲲, 项旻昊, 靖继鹏. 基于LDA2vec和DTM模型的颠覆性技术主题识别研究——以能源科技领域为例[J]. 图书情报工作, 2023, 67(12): 89-102. 36 Ding M L, Yu W K, Li R, et al. Research on potential disruptive technology identification based on technology network[J]. PLoS One, 2024, 19(4): e0298098. 37 Gutsche T. Automatic weak signal detection and forecasting[D]. Enschede: University of Twente, 2018. 38 纪亚琨, 余翔, 张奔, 等. 专利网络视角下的潜在颠覆性技术识别——以自动驾驶领域为例[J]. 情报杂志, 2022, 41(12): 46-50, 139. 39 黄鲁成, 蒋林杉, 吴菲菲. 萌芽期颠覆性技术识别研究[J]. 科技进步与对策, 2019, 36(1): 10-17. 40 邢晓昭, 任亮, 雷孝平, 等. 基于专利主题演化的颠覆性技术识别研究——以类脑智能领域为例[J]. 情报科学, 2023, 41(3): 81-88. 41 Reimers N, Gurevych I. Sentence-BERT: sentence embeddings using Siamese BERT-networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2019: 3980-3990. 42 Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2019: 4171-4186. 43 Le Q V, Mikolov T. Distributed representations of sentences and documents[C]// Proceedings of the 31th International Conference on Machine Learning. JMLR.org, 2014, 32(2): 1188-1196. 44 罗素平, 寇翠翠, 金金, 等. 基于离群专利的颠覆性技术预测——以中药专利为例[J]. 情报理论与实践, 2019, 42(7): 165-170. 45 王秀红, 王欣, 王少凡, 等. 基于SimCSE-LDA和异常检测的颠覆性技术识别方法——以农业机器人为例[J]. 情报理论与实践, 2023, 46(5): 135-143. 46 Breunig M M, Kriegel H P, Ng R T, et al. LOF: identifying density-based local outliers[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2000: 93-104. 47 Li L, Huang L S, Yang W, et al. Privacy-preserving LOF outlier detection[J]. Knowledge and Information Systems, 2015, 42(3): 579-597. 48 Papadimitriou S, Kitagawa H, Gibbons P B, et al. LOCI: fast outlier detection using the local correlation integral[C]// Proceedings 19th International Conference on Data Engineering. Piscataway: IEEE, 2004: 315-326. 49 李春燕, 黄斌. 利用S曲线法判断3D打印工艺技术生命周期[J]. 科技与经济, 2017, 30(2): 91-95. 50 杨杰, 邓三鸿, 王昊. 科学研究的颠覆性创新测度——相对颠覆性指数[J]. 情报学报, 2023, 42(9): 1052-1064. 51 Blei D M, Lafferty J D. Dynamic topic models[C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 113-120. |
|
|
|