|
|
Research on Scenario Evolution of Food Safety Incidents Based on Knowledge Element and Bayesian Network |
Song Yinghua1,2,3, Liu Hanxiao1,2,3, Jiang Xinyu1,2,3, Yang Lijiao1,2,3 |
1. School of Management, Wuhan University of Technology, Wuhan 430070; 2. China Research Center for Emergency Management, Wuhan University of Technology, Wuhan 430070; 3. Hubei Collaboration Innovation Center for Early Warning and Emergency Response Technology, Wuhan 430070 |
|
|
Abstract The scenario evolution of food safety incidents has the characteristics of unclear path, complex developments, and various subjects. Therefore, it is difficult for decision makers to effectively respond during emergency rescue operations. In the current study, a knowledge element model was used to understand the composition of food safety incident scenarios, which was subdivided into three components: emergencies, exposure, and emergency management; this was done to explore the evolution mechanism of incident scenarios. In addition, Bayesian network technology was employed to further develop a comprehensive model for scenario evolution and quantify the most likely scenarios while Dempster-Shafer (DS) theory was applied to modify the probabilities. Finally, the efficacy and feasibility of the developed method were demonstrated through the Taiwan Plasticizer Pollution case study. Moreover, by better understanding evolution mechanism, this study helps government agencies improve the efficacy of food safety response and conduct more targeted control measures.
|
Received: 26 March 2018
|
|
|
|
[1] Liu A P, Shen L, Tan Y X, et al.Food integrity in China: Insights from the national food spot check data in 2016[J]. Food Control, 2018, 84: 403-407. [2] McCorriston S, MacLaren D. Parastatals as instruments of government policy: The food corporation of India[J]. Food Policy, 2016, 65: 53-62. [3] Rouvière E.Small is beautiful: firm size, prevention and food safety[J]. Food Policy, 2016, 63: 12-22. [4] Ortega D L, Bai J.Chinese consumers’ demand for food safety attributes: A push for government and industry regulations[J]. American Journal of Agricultural Economics, 2015, 94(2): 489-495. [5] 于峰, 李向阳, 孙钦莹. 突发事件情景应对案例库族谱设计[J]. 系统工程理论与实践, 2015, 35(10): 2596-2605. [6] 张明红, 佘廉, 耿波. 基于情景的结构化突发事件相似度研究[J]. 中国管理科学, 2017, 25(1): 151-159. [7] 王宁, 郭玮, 黄红雨, 等. 基于知识元的应急管理案例情景化表示及存储模式研究[J]. 系统工程理论与实践, 2015, 35(11): 2939-2949. [8] 盛勇, 孙庆云, 王永明. 突发事件情景演化及关键要素提取方法[J]. 中国安全生产科学技术, 2015, 11(1): 17-21. [9] 李健行, 夏登友, 武旭鹏. 基于知识元与动态贝叶斯网络的非常规突发灾害事故情景分析[J]. 安全与环境学报, 2014, 14(4): 165-170. [10] 夏登友, 钱新明, 段在鹏. 基于动态贝叶斯网络的非常规突发灾害事故情景推演[J]. 东北大学学报(自然科学版), 2015, 36(6): 897-902. [11] 方志耕, 杨保华, 陆志鹏, 等. 基于Bayes推理的灾害演化GERT网络模型研究[J]. 中国管理科学, 2009, 17(2): 102-107. [12] 裘江南, 刘丽丽, 董磊磊. 基于贝叶斯网络的突发事件链建模方法与应用[J]. 系统工程学报, 2012, 27(6): 739-750. [13] 王东波, 叶文豪, 吴毅, 等. 基于多特征时间抽取模型的食品安全事件演化序列生成研究[J]. 情报学报, 2017, 36(9): 930-939. [14] 裘江南, 王延章, 董磊磊, 等. 基于贝叶斯网络的突发事件预测模型[J]. 系统管理学报, 2011, 20(1): 98-103. [15] 张明红. 基于案例的非常规突发事件情景推理方法研究[D]. 武汉: 华中科技大学, 2016: 39-102. [16] 仲秋雁, 路光, 王宁. 基于知识元模型和系统动力学模型的突发事件仿真方法[J]. 情报科学, 2014, 32(10): 15-19. [17] 李春艳. 基于系统动力学的非常规突发事件发展演化研究[D]. 天津: 南开大学, 2012: 20-57. [18] 韩大平. 食品安全危机信息在社交媒体中的传播研究[D]. 北京: 北京邮电大学, 2015: 38-84. [19] 王延章. 应急管理信息系统: 基本原理、关键技术、案例[M]. 北京: 科学出版社, 2010: 94-102. [20] 张磊, 王延章, 陈雪龙. 基于知识元的非常规突发事件情景模糊推演方法[J]. 系统工程学报, 2016, 31(6): 729-738. [21] 张承伟, 李建伟, 陈雪龙. 基于知识元的突发事件情景建模[J]. 情报杂志, 2012, 31(7): 11-15. [22] 范维澄, 刘奕. 城市公共安全体系架构分析[J]. 城市管理与科技, 2009, 11(5): 38-41. [23] 宋英华, 张羽, 方丹辉, 等. 食品安全监管的情报流控制策略研究[J]. 情报学报, 2017, 36(10): 1023-1030. [24] Witteman C, Renooij S.Evaluation of a verbal-numerical probability scale[J]. International Journal of Approximate Reasoning, 2003, 33: 117-131. [25] 贾海洋. 贝叶斯网学习若干问题研究[D]. 长春: 吉林大学, 2008: 11-69. |
|
|
|