|
|
Storage of Semantic Knowledge Hypergraph Based on a Resource Description Framework |
Song Xueyan, Zhang Weimin, Zhang Xiangqing |
School of Business and Management, Jilin University, Changchun 130012 |
|
|
Abstract To address the low storage efficiency and difficulty in storing complex semantic relationships in a resource description framework (RDF), the hypergraph theory is introduced to explore a semantic knowledge graph storage model that integrates the hypergraph theory to realize the storage of hypergraph data based on the RDF and provide a reference for other scholars to use the RDF to build knowledge hypergraphs. We construct a semantic knowledge hypergraph (SKH) model suitable for hypergraphs, analyze its storage efficiency and storage capacity of complex semantic relations by comparing it with a semantic knowledge graph (SKG), and discuss its applications in knowledge retrieval, knowledge reasoning, data conversion, and visualization. We established that the SKH model has better storage efficiency and complex semantic relationship storage capacity than the SKG. The methods of knowledge retrieval and knowledge reasoning of SKG are also applicable to SKH. The SKH model data can be transformed into SKG data considerably, and the SKH model provides a diversified and expressive visualization method. It is crucial for complex semantic storage in the field of information resource management.
|
Received: 30 September 2022
|
|
|
|
1 W3C RDF Working Group. RDF 1.1 concepts and abstract syntax[EB/OL]. (2014-02-25) [2023-01-07]. http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. 2 W3C RDF Working Group. Resource description framework (RDF)[EB/OL]. (2014-02-25) [2023-01-07]. https://www.w3.org/2001/sw/wiki/RDF. 3 中国电子技术标准化研究院. 知识图谱标准化白皮书(2019版)[R/OL]. (2019-08-01) [2022-04-23]. http://www.cesi.cn/images/editor/20190911/20190911095208624.pdf. 4 高劲松, 张强, 李帅珂. 可移动文物的知识图谱构建及关联数据存储——以湖北省博物馆为例[J]. 现代情报, 2022, 42(4): 88-98. 5 Zhang F, Wu J Z, Nie Y L, et al. Research of knowledge graph technology and its applications in agricultural information consultation field[C]// Proceedings of the 39th IEEE International Performance Computing and Communications Conference. Piscataway: IEEE, 2021: 1-4. 6 张琪, 王东波, 黄水清, 等. 史书多维知识重组与可视化研究——以《史记》为对象[J]. 情报学报, 2022, 41(2): 130-141. 7 Wei J Z, Liu R. An approach of constructing knowledge graph of the hundred schools of thought in ancient China[C]// Proceedings of the 2019 ACM/IEEE Joint Conference on Digital Libraries. Piscataway: IEEE, 2019: 335-336. 8 Zhao H X, Pan Y L, Yang F. Research on information extraction of technical documents and construction of domain knowledge graph[J]. IEEE Access, 2020, 8: 168087-168098. 9 高劲松, 马倩倩, 周习曼, 等. 文献知识元语义链接的图式存储研究[J]. 情报科学, 2015, 33(1): 126-131. 10 杭婷婷, 冯钧, 陆佳民. 知识图谱构建技术: 分类、调查和未来方向[J]. 计算机科学, 2021, 48(2): 175-189. 11 陈涛, 刘炜, 单蓉蓉, 等. 知识图谱在数字人文中的应用研究[J]. 中国图书馆学报, 2019, 45(6): 34-49. 12 陈涛, 李惠, 张永娟, 等. LIBRA技术理论及其在史料图像资源中的应用[J]. 大学图书馆学报, 2022, 40(4): 64-74. 13 吴鹏, 刘恒旺, 丁慧君. 基于本体和NoSQL的机械产品方案设计的知识表示与存储研究[J]. 情报学报, 2017, 36(3): 285-296. 14 胡秉德, 王新根, 王新宇, 等. 超图学习综述: 算法分类与应用分析[J]. 软件学报, 2022, 33(2): 498-523. 15 王蝶, 康丽英. 一般超图的张量谱性质[J]. 运筹学学报, 2023, 27(1): 138-148. 16 张磊, 牛倩楠, 任海珍. 一致超图的边连通性和最大边连通性[J]. 山西大学学报(自然科学版), 2021, 44(6): 1079-1085. 17 上官冲, 葛根年. 稀疏超图: 从理论到应用[J]. 中国科学: 数学, 2023, 53(2): 187-216. 18 周丽娜, 常笑, 胡枫. 利用邻接结构熵确定超网络关键节点[J]. 计算机工程与应用, 2022, 58(8): 76-82. 19 Li W, Wang R J, Jia X F. The optimal inference approximate algorithm in weighted hypergraph based on granular computing[C]// Proceedings of the 5th International Conference on Computer Science and Network Technology. Piscataway: IEEE, 2017: 273-276. 20 陈文杰. 基于超图的科研合作推荐研究[J]. 数据分析与知识发现, 2023, 7(4): 68-76. 21 刘高, 黄沈权, 龙安, 等. 基于超图网络的产品设计知识智能推荐方法研究[J]. 计算机应用研究, 2022, 39(10): 2962-2967. 22 于亚新, 张文超, 李振国, 等. 基于超图的EBSN个性化推荐及优化算法[J]. 计算机研究与发展, 2020, 57(12): 2556-2570. 23 吴越, 王英, 王鑫, 等. 基于超图卷积的异质网络半监督节点分类[J]. 计算机学报, 2021, 44(11): 2248-2260. 24 白思萌, 牛振东, 何慧, 等. 基于超图注意力网络的生物医学文本分类方法[J]. 数据分析与知识发现, 2022, 6(11): 13-24. 25 赵宇红, 张晓楠. 基于超图和k-means改进的异质网络社区发现算法[J]. 计算机应用与软件, 2021, 38(10): 290-296. 26 Xie C, Zhong W, Xu W, et al. Visual analytics of heterogeneous data using hypergraph learning[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(1): Article No.4. 27 C.贝尔热. 超图——有限集的组合学[M]. 卜月华, 张克民, 译. 南京: 东南大学出版社, 2002. 28 高峰, 郑丽丽, 顾进广. 面向多元时序关系的金融知识图谱表示与构建[J]. 山西大学学报(自然科学版), 2022, 45(4): 873-883. 29 李豪, 周爽. 基于三维知识超图的电力智库知识服务平台建设[J]. 智库理论与实践, 2022, 7(3): 84-92, 99. 30 田玲, 张谨川, 张晋豪, 等. 知识图谱综述——表示、构建、推理与知识超图理论[J]. 计算机应用, 2021, 41(8): 2161-2186. 31 Munshi S, Chakraborty A, Mukhopadhyay D. Theories of hypergraph-graph (HG(2)) data structure[C]// Proceedings of the 2013 International Conference on Cloud & Ubiquitous Computing & Emerging Technologies. Piscataway: IEEE, 2014: 204-207. 32 Munshi S, Chakraborty A, Mukhopadhyay D. Integrating RDF into hypergraph-graph (HG(2)) data structure[C]// Proceedings of the 2013 International Conference on Cloud & Ubiquitous Computing & Emerging Technologies. Piscataway: IEEE, 2014: 208-212. 33 Chernenkiy V, Gapanyuk Y, Nardid A, et al. Using the metagraph approach for addressing RDF knowledge representation limitations[C]// Proceedings of the Conference of 2017 Internet Technologies and Applications. Piscataway: IEEE, 2017: 47-52. 34 Terekhov V, Gapanyuk Y, Kanev A. Metagraph representation for overcoming limitations of existing knowledge bases[C]// Proceedings of the 2021 28th Conference of Open Innovations Association. Piscataway: IEEE, 2021: 458-464. 35 Krótkiewicz M. Hypergraph approach towards ontology design in association-oriented metamodel[J]. Cybernetics and Systems, 2019, 50(2): 132-153. 36 Ji S X, Pan S R, Cambria E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514. |
|
|
|