|
|
Data Intelligence Empowerment and the Cultivation of Intelligence Thinking under the Background of Data Intelligence Empowerment |
Shen Shujing1,2, Yang Jianlin1,2 |
1.School of Information Management, Nanjing University, Nanjing 210023 2.Jiangsu Key Laboratory of Data Engineering and Knowledge Service, Nanjing 210023 |
|
|
Abstract This paper discusses the connotation of “Data Intelligence Empowerment” and the cultivation of intelligence thinking under the background of “Data Intelligence Empowerment.” It provides corresponding suggestions and references for intelligence studies to better adapt to the development of the times and contributes to the efficient realization of “Data Intelligence Empowerment.” This study analyzes the basic problems of “Data Intelligence Empowerment” from the perspective of intelligence studies, clarifies the key and difficult problems in the practice process of “Data Intelligence Empowerment,” and elucidates the new requirements of “Data Intelligence Empowerment” for the cultivation of intelligence thinking; in addition, it explores the practice path of intelligence thinking training under the background of “Data Intelligence Empowerment.” The study demonstrates that the process of “Data Intelligence Empowerment” requires the implementation of intelligence thinking to ensure the quality and efficiency of “Data Intelligence Empowerment.” Based on the orientation and original intention of intelligence talent training, it is necessary to clarify the practical value of intelligence thinking cultivation from the perspective of top-level logic, with the theoretical exploration of the new requirements of intelligence thinking for “Data Intelligence Empowerment” as the theoretical support, and logically integrate complete intelligence thinking into the teaching, application, and practice in the field of intelligence studies for the actual needs of “Data Intelligence Empowerment” and national strategies.
|
Received: 11 May 2022
|
|
|
|
1 李广建, 化柏林. 大数据分析与情报分析关系辨析[J]. 中国图书馆学报, 2014, 40(5): 14-22. 2 罗威. 构建数据密集型科技情报范式[J]. 信息资源管理学报, 2021, 11(2): 12-15. 3 丁波涛. 人工智能时代的情报学发展与创新——基于情报交流理论的视角[J]. 情报学报, 2021, 40(3): 321-332. 4 梁春华. 大数据与人工智能环境下 “一主三辅”情报研究工作模式研究[J]. 情报理论与实践, 2021, 44(9): 64-67, 63. 5 马费成, 张瑞, 李志元. 大数据对情报学研究的影响[J]. 图书情报知识, 2018(5): 4-9. 6 杨建林. 大数据浪潮下情报学研究与教育的变革与守正[J]. 情报理论与实践, 2020, 43(4): 1-9. 7 Dawson R J, Newman I A. Empowerment in IT education[J]. Journal of Information Technology Education: Research, 2002, 1: 125-142. 8 Eylon D. Understanding empowerment and resolving its paradox: lessons from Mary Parker Follett[J]. Journal of Management History, 1998, 4(1): 16-28. 9 Aujoulat I, D’Hoore W, Deccache A. Patient empowerment in theory and practice: polysemy or cacophony?[J]. Patient Education and Counseling, 2007, 66(1): 13-20. 10 Page N, Czuba C E. Empowerment: what is it?[J/OL]. Journal of Extension, 1999, 37(5). https://archives.joe.org/joe/1999october/comm1.php. 11 Spence Laschinger H K, Gilbert S, Smith L M, et al. Towards a comprehensive theory of nurse/patient empowerment: applying Kanter’s empowerment theory to patient care[J]. Journal of Nursing Management, 2010, 18(1): 4-13. 12 Zimmerman M A. Empowerment theory[M]// Handbook of Community Psychology. Boston: Springer, 2000: 43-63. 13 钟国兴, 郭一辉. 别把赋能当“加持”[J]. 中外企业文化, 2020(4): 30-32. 14 孙建军, 李阳, 裴雷. “数智”赋能时代图情档变革之思考[J]. 图书情报知识, 2020(3): 22-27. 15 李品, 杨建林. 基于大数据思维的情报学科发展道路探究[J]. 情报学报, 2019, 38(3): 239-248. 16 赵辉, 化柏林, 何鸿魏. 科技情报用户画像标签生成与推荐[J]. 情报学报, 2020, 39(11): 1214-1222. 17 王益成, 王萍, 张禹. 基于向量空间模型的科技情报用户画像及场景化服务推送研究[J]. 现代情报, 2020, 40(2): 3-10, 25. 18 陈峰. 产业竞争情报用户需求识别方法[J]. 情报科学, 2014, 32(4): 126-130. 19 李纲, 余辉, 夏义堃. 国家安全战略信息需求建模与智能匹配研究[J]. 情报学报, 2021, 40(11): 1129-1138. 20 黄晓斌, 张明鑫. 融合多源数据的企业竞争对手画像构建[J]. 现代情报, 2020, 40(11): 13-21, 33. 21 Saracevic T. Relevance: a review of the literature and a framework for thinking on the notion in information science. Part III: behavior and effects of relevance[J]. Journal of the American Society for Information Science and Technology, 2007, 58(13): 2126-2144. 22 Lim K. Big data and strategic intelligence[J]. Intelligence and National Security, 2016, 31(4): 619-635. 23 范昊, 郑小川. 国内外开源情报研究综述[J]. 情报理论与实践, 2021, 44(10): 185-192, 201. 24 靳嘉林, 王曰芬, 刘城, 等. 融合Hook机制的多源情报信息采集框架设计与应用研究[J]. 科技情报研究, 2022, 4(1): 13-22. 25 Zhang P F, Li T R, Wang G Q, et al. Multi-source information fusion based on rough set theory: a review[J]. Information Fusion, 2021, 68: 85-117. 26 Geigle G, Pfeiffer J, Reimers N, et al. Retrieve fast, rerank smart: cooperative and joint approaches for improved cross-modal retrieval[OL]. (2021-03-22). https://arxiv.org/pdf/2103.11920v1.pdf. 27 Abdulwahab H M, Ajitha S, Saif M A N. Feature selection techniques in the context of big data: taxonomy and analysis[J]. Applied Intelligence, 2022, 52(12): 13568-13613. 28 王延飞, 杜元清. 融汇情报刻画的情报感知研究路径[J]. 科技情报研究, 2020, 2(1): 1-11. 29 李广建, 杨林. 大数据视角下的情报研究与情报研究技术[J]. 图书与情报, 2012(6): 1-8. 30 邱均平, 魏开洋, 周子番. “五计学” 的方法融合探究——对我国图书情报学方法体系创新的影响[J]. 情报理论与实践, 2022, 45(1): 11-16. 31 唐明伟, 蒋勋, 徐臻元, 等. 大数据环境下情报学方法与技术体系构建[J]. 情报科学, 2020, 38(5): 106-111. 32 吴剑泽, 朱庆华. 大情报观下情报学研究方法体系构建思路刍议[J]. 情报工程, 2021, 7(1): 4-15. 33 黄晓斌, 张明鑫. 国外图书情报领域质性研究方法应用分析及启示——以JASIS&T(1998—2018)论文为例[J]. 情报科学, 2021, 39(2): 96-105. 34 甘翼, 王良刚, 黄金元, 等. 大数据和人工智能时代的情报分析和技术探索[J]. 电讯技术, 2018, 58(5): 506-513. 35 杨建林. 基于构成维度视角的情报思维概念解析[J]. 中国图书馆学报, 2022, 48(4): 52-66. 36 梁继文, 杨建林. 关于中国情报学教育长效发展的思考[J]. 情报理论与实践, 2021, 44(12): 1-9. 37 杨建林. 情报学哲学基础的再认识[J]. 情报学报, 2020, 39(3): 317-329. 38 巴志超, 李纲, 周利琴, 等. 数据科学及其对情报学变革的影响[J]. 情报学报, 2018, 37(7): 653-667. 39 Gu J F, Zhang L L. Data, DIKW, big data and data science[J]. Procedia Computer Science, 2014, 31: 814-821. 40 Wang L. Twinning data science with information science in schools of library and information science[J]. Journal of Documentation, 2018, 74(6): 1243-1257. 41 张胡, 李树青, 丁晓蔚, 等. 面向数据科学的情报学学科研究方法及学科教育内容设计[J]. 图书与情报, 2021(5): 115-122. 42 王知津. 大数据时代情报学和情报工作的“变”与“不变”[J]. 情报理论与实践, 2019, 42(7): 1-10. 43 周晓英, 陈燕方. 中国情报学研究范式的冲突与思考[J]. 公安学研究, 2019(2): 27-44, 123. 44 陈美华, 王延飞. 情报研究特色教育条件探索——以美国教育实践为例[J]. 情报理论与实践, 2021, 44(5): 29-35. |
|
|
|