|
|
Scientific Breakthrough Topics Identification in an Early Stage Using Multiple Weak Linkage Fusion |
Liu Yahui1,2, Xu Haiyun3,4, Wu Huawei5, Liu Chunjiang6, Wang Haiyan4 |
1.National Science Library, Chinese Academy of Sciences, Beijing 100190 2.Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 3.Business School, Shandong University of Technology, Zibo 255000 4.Institute of Scientific and Technical Information of China, Beijing 100038 5.Archives of Northwest Normal University, Lanzhou 730070 6.Chengdu Documentation and Information Center, Chinese Academy of Sciences, Chengdu 610041 |
|
|
Abstract By the term “scientific breakthroughs,” we mean innovations that are relatively transformative and have a profound impact on the future direction and trends of a disciplinary field. A scientific breakthrough aims to reveal new phenomena and laws that have emerged earlier but have not yet been recognized or investigated formally. Identifying scientific breakthroughs at an earlier stage can provide decision support to policymakers and granting agencies in optimizing resource allocation. This study selected the field of Gene Engineered Vaccine for empirical research—focusing on weak association linkages in knowledge networks—and constructed a multi-layer network based on subject term co-occurrence, author co-authorship, and reference co-citation relationships. Thereafter, we analyzed the association information between multiple feature items to mine the subject content and evaluated the recognition effect with the help of expert judgment and authoritative reports. The comparative analysis with the identification results based on strong correlation relationships verified that the method constructed in this study is applicable to the early identification of scientific breakthroughs. Future research could draw on network representation learning and introduce temporal networks to pinpoint the moment when a breakthrough is made to fade away.
|
Received: 10 November 2021
|
|
|
|
1 周斐辰. 日本科技创新战略重点及施策方向解析——基于日本《科学技术创新综合战略2020》[J]. 世界科技研究与发展, 2021, 43(4): 440-449. 2 任声策. 从美国智库报告看美国科技创新战略新趋势[J]. 上海质量, 2021(1): 13-16. 3 A bill: to authorize appropriations for fiscal years 2022, 2023, 2024, 2025, and 2026 for the National Science Foundation, and for other purposes[R/OL]. (2021-03-26) [2021-08-10]. https://science.house.gov/imo/media/doc/NSF-FORTHEFUTURE_01_xml.pdf. 4 科技部. 欧盟委员会发布报告列出100项对全球经济具有重大影响的突破性创新[EB/OL]. (2019-08-27) [2021-08-29]. http://www.most.gov.cn/gnwkjdt/201908/t20190827_148433.html. 5 新华社. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2021-03-13) [2021-09-05]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. 6 Shapere D. The structure of scientific revolutions[J]. The Philosophical Review, 1964, 73(3): 383-394. 7 Merton R K. Singletons and multiples in scientific discovery: a chapter in the sociology of science[J]. Proceedings of the American Philosophical Society, 1961, 105(5): 470-486. 8 Brad Wray K. Kuhn and the discovery of paradigms[J]. Philosophy of the Social Sciences, 2011, 41(3): 380-397. 9 杜建, 孙轶楠, 张阳, 等. 变革性研究的科学计量学特征与早期识别方法[J]. 中国科学基金, 2019, 33(1): 88-98. 10 Andersen H, Barker P, Chen X. The cognitive structure of scientific revolutions[M]. New York: Cambridge University Press, 2006. 11 Min C, Bu Y, Sun J J. Predicting scientific breakthroughs based on knowledge structure variations[J]. Technological Forecasting and Social Change, 2021, 164: 120502. 12 Galison P. Refections on Image and logic: a material culture of microphysics[J]. Perspectives on Science, 1999, 7(2): 255-284. 13 van Raan A F J. On growth, ageing, and fractal differentiation of science[J]. Scientometrics, 2000, 47(2): 347-362. 14 Smalheiser N R. Rediscovering don swanson: the past, present and future of literature-based discovery[J]. Journal of Data and Information Science, 2017, 2(4): 43-64. 15 Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440-442. 16 Winnink J J. Early-stage detection of breakthrough-class scientific research: using micro-level citation dynamics[D]. Leiden: Leiden University, 2017. 17 Hollingsworth J R. Scientific discoveries: an institutionalist and path-dependent perspective[M]// Biomedicine in the Twentieth Century: Practices, Policies, and Politics. Amsterdam: IOS Press, 2008: 317-353. 18 De Bellis N. Bibliometrics and citation analysis: from the science citation index to cybermetrics[M]. Lanham: Scarecrow Press, 2009. 19 刘亚辉, 许海云. 突破性创新早期识别与弱信号分析综述[J]. 图书情报工作, 2021, 65(4): 89-101. 20 付玉秀, 张洪石. 突破性创新: 概念界定与比较[J]. 数量经济技术经济研究, 2004, 21(3): 73-83. 21 于绥生. 论基础研究原始创新的特点[J]. 技术与创新管理, 2017, 38(4): 354-360. 22 蒋军锋, 李孝兵, 殷婷婷, 等. 突破性技术创新的形成: 述评与未来研究[J]. 研究与发展管理, 2017, 29(6): 109-120. 23 张金柱, 张晓林. 基于专利科学引文的突破性创新识别研究述评[J]. 情报学报, 2016, 35(9): 955-962. 24 陈劲, 谢靓红. 原始性创新研究综述[J]. 科学学与科学技术管理, 2004, 25(2): 23-26. 25 路甬祥. 从诺贝尔奖与20世纪重大科学成就看科技原始创新的规律(摘要)[J]. 中国科学院院刊, 2000, 15(5): 370-376. 26 梁正, 邓兴华, 洪一晨. 从变革性研究到变革性创新: 概念演变与政策启示[J]. 科学与社会, 2017, 7(3): 94-106. 27 Kleinberg J. Bursty and hierarchical structure in streams[J]. Data Mining and Knowledge Discovery, 2003, 7(4): 373-397. 28 Yoon J, Kim K. Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks[J]. Scientometrics, 2011, 88(1): 213-228. 29 张金柱, 张晓林. 利用引用科学知识突变识别突破性创新[J]. 情报学报, 2014, 33(3): 259-266. 30 Chen C M, Chen Y, Horowitz M, et al. Towards an explanatory and computational theory of scientific discovery[J]. Journal of Informetrics, 2009, 3(3): 191-209. 31 罗瑞. 基于熵值的领域科学突破主题的识别与预测[D]. 北京: 中国科学院大学(中国科学院文献情报中心), 2020. 32 杜建. “睡美人”文献的识别方法与唤醒机制研究[D]. 南京: 南京大学, 2017. 33 van Raan A F J, Winnink J J. Do younger Sleeping Beauties prefer a technological prince?[J]. Scientometrics, 2018, 114(2): 701-717. 34 曹艺文, 许海云, 武华维, 等. 基于引文曲线拟合的新兴技术主题的突破性预测——以干细胞领域为例[J]. 图书情报工作, 2020, 64(5): 100-113. 35 Sood A, Tellis G J. Technological evolution and radical innovation[J]. Journal of Marketing, 2005, 69(3): 152-168. 36 Tellis G J. Disruptive technology or visionary leadership?[J]. Journal of Product Innovation Management, 2006, 23(1): 34-38. 37 杨国忠, 陈佳. 企业突破性技术创新行为研究——基于前景理论的演化博弈分析[J]. 工业技术经济, 2020, 39(5): 57-64. 38 徐路路, 王芳. 基于支持向量机和改进粒子群算法的科学前沿预测模型研究[J]. 情报科学, 2019, 37(8): 22-28. 39 刘博文, 白如江, 周彦廷, 等. 基金项目数据和论文数据融合视角下科学研究前沿主题识别——以碳纳米管领域为例[J]. 数据分析与知识发现, 2019, 3(8): 114-122. 40 Liang Z T, Mao J, Lu K, et al. Combining deep neural network and bibliometric indicator for emerging research topic prediction[J]. Information Processing & Management, 2021, 58(5): 102611. 41 刘亚辉. 科学突破性创新早期识别中的弱关系分析[D]. 北京: 中国科学院大学(中国科学院文献情报中心), 2021. 42 Granovetter M. The strength of weak ties: a network theory revisited[J]. Sociological Theory, 1983, 1: 201-233. 43 Xu S, Hao L Y, An X, et al. Review on emerging research topics with key-route main path analysis[J]. Scientometrics, 2020, 122(1): 607-624. 44 林向义, 罗洪云, 李秀成. 企业个体从社交媒体网络吸收异质性知识的过程机理: 弱连接关系视角[J]. 情报理论与实践, 2019, 42(3): 65-71. 45 牌艳欣, 李长玲, 徐璐. 弱引文关系视角下跨学科相关知识组合识别方法探讨——以情报学为例[J]. 图书情报工作, 2020, 64(21): 111-119. 46 张英杰. 科技领域前沿计量探测方法研究[D]. 北京: 中国科学院研究生院(中国科学院文献情报中心), 2011. 47 Wei L, Xu H Y, Wang Z M, et al. Topic detection based on weak tie analysis: a case study of LIS research[J]. Journal of Data and Information Science, 2016, 1(4): 81-101. 48 Yoo S, Won D. Simulation of weak signals of nanotechnology innovation in complex system[J]. Sustainability, 2018, 10(2): 486. 49 Griol-Barres I, Milla S, Cebrián A, et al. Detecting weak signals of the future: a system implementation based on text mining and natural language processing[J]. Sustainability, 2020, 12(19): 7848. 50 岳增慧, 许海云, 赵敏. 强弱连接对学科引证知识扩散动态链路预测的影响研究[J]. 图书情报工作, 2021, 65(13): 66-76. 51 许海云, 武华维, 罗瑞, 等. 基于多元关系融合的科技文本主题识别方法研究[J]. 中国图书馆学报, 2019, 45(1): 82-94. 52 Sun Y Z, Norick B, Han J W, et al. PathSelClus: integrating meta-path selection with user-guided object clustering in heterogeneous information networks[J]. ACM Transactions on Knowledge Discovery from Data, 2013, 7(3): Article No.11. 53 傅俊英, 彭喆, 郑佳, 等. 基于专利异构网络的中小企业潜在合作伙伴研究——以石墨烯领域为例[J]. 情报学报, 2019, 38(4): 391-401. 54 李伟, 刘冬冬, 吴丹, 等. 基因工程疫苗在动物疫病防治中的应用[J]. 畜牧兽医科学(电子版), 2019(22): 90-91. 55 Zhang Y, Porter A L, Hu Z Y, et al. “Term clumping” for technical intelligence: a case study on dye-sensitized solar cells[J]. Technological Forecasting and Social Change, 2014, 85: 26-39. 56 刘奕杉, 王玉琳, 李明鑫. 词频分析法中高频词阈值界定方法适用性的实证分析[J]. 数字图书馆论坛, 2017(9): 42-49. 57 为了一个没有乙肝的中国[EB/OL]. (2018-04-06) [2021-09-05]. http://www.hbver.com/Article/ygfz/ygym/201804/8593.html. 58 吴硕, 徐秀玉. 树突状细胞与喉癌的基因免疫治疗[J]. 临床耳鼻咽喉科杂志, 2006, 20(8): 381-384. 59 Krag D N, Fuller S P, Oligino L, et al. Phage-displayed random peptide libraries in mice: toxicity after serial panning[J]. Cancer Chemotherapy and Pharmacology, 2002, 50(4): 325-332. 60 Nagaraj S, Ziske C, Schmidt-Wolf I G. Human cytokine-induced killer cells have enhanced in vitro cytolytic activity via non-viral interleukin-2 gene transfer[J]. Genetic Vaccines and Therapy, 2004, 2(1): 12. 61 我国自主研制的新一代基因重组乙肝疫苗上市[J]. 肝博士, 2005(5): 63. 62 科技部. 核糖核酸(RNA)干扰机制首次在人体中获得证实[EB/OL]. (2010-03-26) [2021-09-06]. http://www.most.gov.cn/gnwkjdt/201003/t20100325_76448.html. 63 中国科学报. 《科学》评出2013年十大突破[EB/OL]. (2013- 12-25) [2021-09-06]. http://www.cas.cn/xw/kjsm/gjdt/201312/t20131225_4005535.shtml. 64 Carroll J. CAR-T player Juno picks up ‘breakthrough’ status for lead cancer therapy[EB/OL]. (2014-11-24) [2021-09-06]. https://www.fiercebiotech.com/regulatory/car-t-player-juno-picks-up-breakthrough-status-for-lead-cancer-therapy. 65 Kamphorst A O, Wieland A, Nasti T, et al. Rescue of exhausted CD8 T cells by PD-1–targeted therapies is CD28-dependent[J]. Science, 2017, 355(6332): 1423-1427. 66 Robbins Y, Greene S, Friedman J, et al. Tumor control via targeting PD-L1 with chimeric antigen receptor modified NK cells[J]. eLife, 2020, 9: e54854. 67 Hernandez-Lopez R A, Yu W, Cabral K A, et al. T cell circuits that sense antigen density with an ultrasensitive threshold[J]. Science, 2021, 371(6534): 1166-1171. 68 Kugler A, Stuhler G, Walden P, et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell–dendritic cell hybrids[J]. Nature Medicine, 2000, 6(3): 332-336. 69 中国科学院. 2018年诺贝尔奖[EB/OL]. (2018-10-03) [2021-09-08]. http://www.cas.cn/zt/sszt/2018nobelprize/. 70 李新荣, 毛磊, 赵路. 《科学》评出2002年十大科学突破[J]. 科学咨询, 2003(1): 7-8. 71 李旭丰, 张涛. RNA干扰: 控制遗传信息流动的机制[J]. 国外科技动态, 2006(10): 18-28. |
|
|
|