|
|
Mapping China’s Science and Technology Innovation for Management and Decision-Making |
Zhao Zhiyun, Zhang Junsheng, Yao Changqing, Liu Zhihui |
Institute of Scientific and Technical Information of China (ISTIC), Beijing 100038 |
|
|
Abstract The current trend is to base management and decision-making on big data. As it is formed and developed for S&T information, big data will have a profound impact on S&T management and decision-making processes. Visualization technology used to display the history, present status, and predict future of S&T development is conducive to the scientific and democratic management of science and technology. In response to the trend basing S&T management and decision-making on big data, the Institute of Scientific and Technical Information of China has taken the lead in conducting research on developing, and applying China’s S&T innovation maps. Multi-sourced factual S&T innovation data, using big data analysis methods and technologies—in particular, visualization technology—have been used to present the development status of China’s S&T innovation in dimensions including time and space, and further support S&T innovation management and decision-making processes. At present, research on mapping China’s S&T innovation focuses primarily on urban S&T innovation monitoring and evaluation from macro levels (global and national), to China’s regional provinces and cities, to micro-organizations and even individual scientific researchers. To support the construction of China’s innovative cities, especially urban S&T innovation management and decision-making processes, the following areas are being studied: the development status of urban S&T innovation; the distribution and flow of innovation factors; and the analysis and prediction of development trends and laws. China’s S&T innovation map research and the achievements applied will play an important role in supporting China’s S&T innovation development.
|
Received: 15 June 2018
|
|
|
|
[1] Jim Gray.What next? A dozen information-technology research goals[J]. Journal of the ACM, 2003, 50(1): 41-57. [2] 张来武. 科技创新驱动经济发展方式转变[J]. 中国软科学, 2011(12): 1-5. [3] 陈宏愚. 关于区域科技创新资源及其配置分析的理性思考[J]. 中国科技论坛, 2003(5): 36-39 [4] 漆桂林, 高桓, 吴天星. 知识图谱研究进展[J]. 情报工程, 2017, 3(1): 4-25. [5] 陈明. 大数据可视化分析[J]. 计算机教育, 2015(5): 94-97. [6] Shiffrin R M, Börner K.Mapping knowledge domains[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(Supplement 1): 5183-5185. [7] Leydesdorff L.Katy Börner: Atlas of science: visualizing what we know[J]. Scientometrics, 2011, 88(2): 675-677. [8] 宋娜, 王迪, 王东雨, 等. 国内移动医疗研究的可视化分析[J]. 情报工程, 2017, 3(2): 100-107. [9] Chen C M.CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the Association for Information Science and Technology, 2014, 57(3): 359-377. [10] 化柏林. 科技信息大数据在情报研究服务中的应用[J]. 图书情报工作, 2017, 61(16): 150-156. [11] 方创琳, 刘毅, 林跃然. 中国创新型城市发展报告[M]. 北京: 科学出版社, 2013. [12] 邹燕. 创新型城市评价指标体系与国内重点城市创新能力结构研究[J]. 管理评论, 2012, 24(6): 50-57. [13] 张洁, 刘科伟, 刘红光. 我国主要城市创新能力评价[J]. 科技管理研究, 2007, 27(11): 74-77. [14] 蒋勋, 潘云涛, 苏新宁. 从文献产出透析我国官产学研合作研究发展的演变规律[J]. 管理学报, 2015, 12(12): 1805-1814. [15] 王少华. 国内产学研合作研究综述——基于2002—2012年期刊文献分析[J]. 科技管理研究, 2015(11): 217-220. [16] 周晓阳, 王钰云. 产学研协同创新绩效评价文献综述[J]. 科技管理研究, 2014, 34(11): 45-49. [17] 付鑫金, 朱礼军, 曹燕, 等. 科技查新用于识别产学研潜在合作对象的方法研究[J]. 情报工程, 2018, 4(2): 101-111. [18] 徐峰. 科技情报与科技智库的融合发展探析[J]. 情报工程, 2017, 3(5): 4-11. |
|
|
|