|
|
Multidimensional Measurement of the Catalytic Capacity of Technology Innovation Based on Patentometrics |
Song Haoyang, Hou Jianhua, Zhangyang |
School of Information Management, Sun Yat-sen University, Guangzhou 510006 |
|
|
Abstract As participants of innovation activities, innovation catalysts play an important supporting role in improving the efficiency of technology innovation. However, the research on technological innovation catalytic capacity measurement is very limited. Most studies take the subjective evaluation of questionnaire surveys as the core method, lacking comprehensive and quantitative measurement tools and methods. By defining and analyzing the connotation of the catalytic capacity of technological innovation (CCTI), in this study, a two-dimensional conceptual structure model of spillover and diffusion catalysis of technology innovation (CCTS and CCTD) was proposed. Subsequently, based on the characteristics of the ranking of patent cooperative applicants and citation information, a multidimensional measurement index system was constructed from two aspects of technological catalysis strength and breadth. Further, international innovation catalysts from China, the United States, Japan, and South Korea were taken as samples to explore the differences and characteristics of their CCTI. The results show that (1) CCTI has two-order, multidimensional structural characteristics, which are further reflected in the strength and breadth of innovation catalysis, and can be measured from four indexes: contribution, quality, geographical scope, and subject scope. (2) Innovation catalysts show two kinds of capacity preferences in each dimension index and catalytic capacity; thus, Toyota Motor Corp represented the development of CCTS and CCTD at the same time while the preference of CCTD was represented by Samsung Electronics Company (SEC), while State Grid Corporation of China (SG) with high spillover catalysis-low diffusion catalysis has individual particularity. (3) CCTS of innovation catalysts in China, Japan, South Korea, and the United States decreased in order, while their CCTD ranked in the opposite direction. This study enriches the concept and measurement of CCTI, reveals the characteristics of different catalysts, and provides a new perspective and method for evaluating and selecting innovation partners.
|
Received: 16 August 2021
|
|
|
|
1 刘海兵. 创新情境、开放式创新与创新能力动态演化[J]. 科学学研究, 2019, 37(9): 1680-1693. 2 Schwartz D, Bar-El R. The role of a local industry association as a catalyst for building an innovation ecosystem: an experiment in the state of Ceara in Brazil[J]. Innovation, 2015, 17(3): 383-399. 3 Amitrano C C, Coppola M, Tregua M, et al. Knowledge sharing in innovation ecosystems: a focus on functional food industry[J]. International Journal of Innovation and Technology Management, 2017, 14(5): 1750030. 4 Ben Letaifa S. The uneasy transition from supply chains to ecosystems: the value-creation/value-capture dilemma[J]. Management Decision, 2014, 52(2): 278-295. 5 Brettel M, Cleven N J. Innovation culture, collaboration with external partners and NPD performance[J]. Creativity and Innovation Management, 2011, 20(4): 253-272. 6 Wang L W, Jin J L, Banister D. Resources, state ownership and innovation capability: evidence from Chinese automakers[J]. Creativity and Innovation Management, 2019, 28(2): 203-217. 7 Janssen M J, Bogers M, Wanzenb?ck I. Do systemic innovation intermediaries broaden horizons? A proximity perspective on R&D partnership formation[J]. Industry and Innovation, 2020, 27(6): 605-629. 8 Reus B, Moser C, Groenewegen P. Expanding organisational knowledge online: the role of bridging members in knowledge expansion in online groups[J/OL]. Innovation, (2020-11-09). https://doi.org/10.1080/14479338.2020.1840381. 9 Liu Y P, Meyer K E. Boundary spanners, HRM practices, and reverse knowledge transfer: the case of Chinese cross-border acquisitions[J]. Journal of World Business, 2020, 55(2): 100958. 10 Villani E, Rasmussen E, Grimaldi R. How intermediary organizations facilitate university-industry technology transfer: a proximity approach[J]. Technological Forecasting and Social Change, 2017, 114: 86-102. 11 de Silva M, Howells J, Meyer M. Innovation intermediaries and collaboration: knowledge-based practices and internal value creation[J]. Research Policy, 2018, 47(1): 70-87. 12 Howells J. Intermediation and the role of intermediaries in innovation[J]. Research Policy, 2006, 35(5): 715-728. 13 Agogué M, Berthet E, Fredberg T, et al. Explicating the role of innovation intermediaries in the “unknown”: a contingency approach[J]. Journal of Strategy and Management, 2017, 10(1): 19-39. 14 Lin M, Wei J. The impact of innovation intermediary on knowledge transfer[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 502: 21-28. 15 魏龙, 党兴华. 惯例复制、网络闭包与创新催化: 一个交互效应模型[J]. 南开管理评论, 2018, 21(3): 165-175, 190. 16 Martin R L. The innovation catalysts[J]. Harvard Business Review, 2011, 89(6): 82-87, 136. 17 Tortoriello M, McEvily B, Krackhardt D. Being a catalyst of innovation: the role of knowledge diversity and network closure[J]. Organization Science, 2015, 26(2): 423-438. 18 Beretta M, S?ndergaard H A. Employee behaviours beyond innovators in internal crowdsourcing: what do employees do in internal crowdsourcing, if not innovating, and why?[J]. Creativity and Innovation Management, 2021, 30(3): 542-562. 19 杨剑钊, 李晓娣. 前摄型人格对越轨创新绩效作用路径研究——创新催化的中介作用及变革型领导行为的调节作用[J]. 预测, 2019, 38(4): 17-23. 20 魏龙, 党兴华. 惯例复制对越轨创新的影响: 网络闭合与知识基础的调节[J]. 科研管理, 2020, 41(10): 30-39. 21 van Niekerk L, Mathanga D P, Juban N, et al. Universities as catalysts of social innovation in health systems in low-and middle-income countries: a multi-country case study[J]. Infectious Diseases of Poverty, 2020, 9(1): 90. 22 Lin H, Zeng S X, Liu H J, et al. How do intermediaries drive corporate innovation? A moderated mediating examination[J]. Journal of Business Research, 2016, 69(11): 4831-4836. 23 Vallejo B, Oyelaran-Oyeyinka B, Ozor N, et al. Open innovation and innovation intermediaries in sub-Saharan Africa[J]. Sustainability, 2019, 11(2): 392. 24 Evans D S, Schmalensee R. Catalyst code: the strategies behind the world’s most dynamic companies[M]. Boston: Harvard Business School Press, 2007. 25 Edler J, Yeow J. Connecting demand and supply: the role of intermediation in public procurement of innovation[J]. Research Policy, 2016, 45(2): 414-426. 26 Weng C S. Innovation intermediaries in technological alliances[J]. International Journal of Innovation and Technology Management, 2017, 14(2): 1740013. 27 Ollila S, Elmquist M. Managing open innovation: exploring challenges at the interfaces of an open innovation arena[J]. Creativity and Innovation Management, 2011, 20(4): 273-283. 28 Sieg J H, Wallin M W, von Krogh G. Managerial challenges in open innovation: a study of innovation intermediation in the chemical industry[J]. R&D Management, 2010, 40(3): 281-291. 29 Chiambaretto P, Massé D, Mirc N. “All for One and One for All?”-Knowledge broker roles in managing tensions of internal coopetition: the Ubisoft case[J]. Research Policy, 2019, 48(3): 584-600. 30 魏龙, 党兴华. 网络闭合、知识基础与创新催化: 动态结构洞的调节[J]. 管理科学, 2017, 30(3): 83-96. 31 胡苏捷, 庄越. 如何激发协同创新的催化效应——基于新型研发组织的案例研究[J]. 财会月刊, 2018(22): 111-116. 32 朱明明, 万文涛. 中国科研团队在科技创新人才成长过程中的“襄助效应”研究[J]. 科学管理研究, 2017, 35(4): 87-90, 98. 33 张丽华, 田丹, 曲建升. 科研合作模式与科研人员角色的变化规律分析——以病毒学领域职业生涯至少为30年的作者为例[J]. 情报学报, 2020, 39(7): 719-730. 34 尹聪慧, 余翔. 企业CCS技术国际合作路径及模式研究—基于专利计量分析的视角[J]. 情报杂志, 2016, 35(10): 70-75. 35 吕一博, 韦明, 林歌歌. 基于专利计量的技术融合研究: 判定、现状与趋势——以物联网与人工智能领域为例[J]. 科学学与科学技术管理, 2019, 40(4): 16-31. 36 毛荐其, 李新秀, 陈雷. 纳米能源领域技术发明能力比较研究[J]. 科研管理, 2017, 38(3): 104-113. 37 曹明, 陈荣, 孙济庆, 等. 基于专利分析的技术竞争力比较研究[J]. 科学学研究, 2016, 34(3): 380-385, 470. 38 沈慧君, 孙嘉悦, 黄灿, 等. 知识来源的地理范围、研发模式与创新价值获取[J]. 科学学研究, 2020, 38(7): 1285-1293. 39 Zheng Q, Huang L C, Wu F F, et al. Analyzing technological knowledge diffusion among technological fields using patent data: the example of microfluidics[J]. International Journal of Innovation and Technology Management, 2017, 14(1): 1740004. 40 Ma D, Yu Q, Li J, et al. Innovation diffusion enabler or barrier: an investigation of international patenting based on temporal exponential random graph models[J]. Technology in Society, 2021, 64: 101456. 41 Yu D J, Sheng L B. Knowledge diffusion paths of blockchain domain: the main path analysis[J]. Scientometrics, 2020, 125(1): 471-497. 42 Yang C H, Chen C J, Shyu J Z. Innovation intermediary for creating regional knowledge capabilities in knowledge cluster[C]// Proceedings of the 2008 IEEE International Conference on Industrial Engineering and Engineering Management. IEEE, 2008: 831-835. 43 Kokshagina O, Le Masson P, Bories F. Fast-connecting search practices: on the role of open innovation intermediary to accelerate the absorptive capacity[J]. Technological Forecasting and Social Change, 2017, 120: 232-239. 44 曹勇, 蒋振宇, 孙合林. 创新开放度对新兴企业知识溢出效应的影响研究[J]. 科学学与科学技术管理, 2015, 36(1): 151-161. |
|
|
|