|
|
Quantified Self: Research Development, Elements and Opportunities |
Yang Mengqing1, Zhu Qinghua2, Zhao Yuxiang3, Xu Xiaoting4 |
1.School of Journalism and Communication, Nanjing Normal University, Nanjing 210097 2.School of Information Management, Nanjing University, Nanjing 210023 3.School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094 4.School of Sociology and Population Studies, Nanjing University of Posts and Telecommunications, Nanjing 210023 |
|
|
Abstract In this study, research on the quantified self (QS) is reviewed to provide a theoretical reference for the further study of QS in the field of health informatics. First, this paper reviews the history of QS and clarifies its key event nodes. Second, the core and extension of the concept of QS are defined. Then, studies on QS in the field of information management are considered as the review object to summarize and analyze the research topics. To gain a better understanding of QS, this study introduces activity theory to analyze the components of the activity of QS. Finally, combined with the research characteristics of the information management discipline, the future direction of research on QS is proposed.
|
Received: 03 June 2021
|
|
|
|
1 Swan M. Health 2050: the realization of personalized medicine through crowdsourcing, the quantified self, and the participatory biocitizen[J]. Journal of Personalized Medicine, 2012, 2(3): 93-118. 2 健康中国行动(2019—2030年)[EB/OL]. (2019-07-15) [2021-06-03]. http://www.gov.cn/xinwen/2019-07/15/content_5409694.htm. 3 Sysling F. Measurement, self-tracking and the history of science: an introduction[J]. History of Science, 2020, 58(2): 103-116. 4 吉娜·聂夫, 唐恩·娜芙斯. 量化自我: 如何利用数据成就更幸福的自己[M]. 方也可, 译. 北京: 机械工业出版社, 2018. 5 Swan M. The quantified self: fundamental disruption in big data science and biological discovery[J]. Big Data, 2013, 1(2): 85-99. 6 Meng J B, Peng W, Shin S Y, et al. Online self-tracking groups to increase fruit and vegetable intake: a small-scale study on mechanisms of group effect on behavior change[J]. Journal of Medical Internet Research, 2017, 19(3): e63. 7 Bergroth H. ‘You can’t really control life’: dis/assembling self-knowledge with self-tracking technologies[J]. Distinktion: Journal of Social Theory, 2019, 20(2): 190-206. 8 Lupton D. The quantified self: a sociology of self-tracking[M]. Cambridge: Polity Press, 2016. 9 Maltseva K, Lutz C. A quantum of self: a study of self-quantification and self-disclosure[J]. Computers in Human Behavior, 2018, 81: 102-114. 10 Heyen N B. From self-tracking to self-expertise: the production of self-related knowledge by doing personal science[J]. Public Understanding of Science, 2020, 29(2): 124-138. 11 Lee V R. What’s happening in the “Quantified Self” movement?[C]// Proceedings of the 2014 International Conference of the Learning Sciences, 2014: 1032-1036. 12 Lupton D. Quantifying the body: monitoring and measuring health in the age of mHealth technologies[J]. Critical Public Health, 2013, 23(4): 393-403. 13 Almalki M, Gray K, Sanchez F M. The use of self-quantification systems for personal health information: big data management activities and prospects[J]. Health Information Science and Systems, 2015, 3: Article No.S1. 14 Swan M. Emerging patient-driven health care models: an examination of health social networks, consumer personalized medicine and quantified self-tracking[J]. International Journal of Environmental Research and Public Health, 2009, 6(2): 492-525. 15 Barrett M A, Humblet O, Hiatt R A, et al. Big data and disease prevention: from quantified self to quantified communities[J]. Big Data, 2013, 1(3): 168-175. 16 Ancker J S, Witteman H O, Hafeez B, et al. “You get reminded you’re a sick person”: personal data tracking and patients with multiple chronic conditions[J]. Journal of Medical Internet Research, 2015, 17(8): e202. 17 McKinney P, Cox A M, Sbaffi L. Information literacy in food and activity tracking among parkrunners, people with type 2 diabetes, and people with irritable bowel syndrome: exploratory study[J]. Journal of Medical Internet Research, 2019, 21(8): e13652. 18 Almalki M, Gray K, Martin-Sanchez F. Development and validation of a taxonomy for characterizing measurements in health self-quantification[J]. Journal of Medical Internet Research, 2017, 19(11): e378. 19 Grundy Q, Held F P, Bero L A. Tracing the potential flow of consumer data: a network analysis of prominent health and fitness apps[J]. Journal of Medical Internet Research, 2017, 19(6): e233. 20 Trace C B, Zhang Y. The quantified-self archive: documenting lives through self-tracking data[J]. Journal of Documentation, 2019, 76(1): 290-316. 21 Rapp A, Cena F. Personal informatics for everyday life: how users without prior self-tracking experience engage with personal data[J]. International Journal of Human-Computer Studies, 2016, 94: 1-17. 22 Fernandez-Luque L, Singh M, Ofli F, et al. Implementing 360° Quantified Self for childhood obesity: feasibility study and experiences from a weight loss camp in Qatar[J]. BMC Medical Informatics and Decision Making, 2017, 17(1): 37. 23 Robbins R, Krebs P, Rapoport D M, et al. Examining use of mobile phones for sleep tracking among a national sample in the USA[J]. Health Communication, 2019, 34(5): 545-551. 24 Ng K, Kokko S, Tammelin T, et al. Clusters of adolescent physical activity tracker patterns and their associations with physical activity behaviors in Finland and Ireland: cross-sectional study[J]. Journal of Medical Internet Research, 2020, 22(9): e18509. 25 Attig C, Franke T. Abandonment of personal quantification: a review and empirical study investigating reasons for wearable activity tracking attrition[J]. Computers in Human Behavior, 2020, 102: 223-237. 26 Shin D H, Biocca F. Health experience model of personal informatics: the case of a quantified self[J]. Computers in Human Behavior, 2017, 69: 62-74. 27 Hassan L, Dias A, Hamari J. How motivational feedback increases user's benefits and continued use: a study on gamification, quantified-self and social networking[J]. International Journal of Information Management, 2019, 46: 151-162. 28 Attig C, Franke T. I track, therefore I walk - Exploring the motivational costs of wearing activity trackers in actual users[J]. International Journal of Human-Computer Studies, 2019, 127: 211-224. 29 Rapp A, Tirabeni L. Self-tracking while doing sport: comfort, motivation, attention and lifestyle of athletes using personal informatics tools[J]. International Journal of Human-Computer Studies, 2020, 140: 102434. 30 Stiglbauer B, Weber S, Batinic B. Does your health really benefit from using a self-tracking device? Evidence from a longitudinal randomized control trial[J]. Computers in Human Behavior, 2019, 94: 131-139. 31 朱启贞, 胡德华, 张彦斐. 量化自我理论在健康领域的应用[J]. 图书馆论坛, 2018, 38(2): 17-21. 32 胡德华, 张彦斐. 量化自我研究[J]. 图书馆论坛, 2018, 38(2): 1-7. 33 李东进, 张宇东. 消费领域的量化自我: 研究述评与展望[J]. 外国经济与管理, 2018, 40(1): 3-17. 34 李东进, 张宇东. 量化自我的效应及其对消费者参与行为的影响机制[J]. 管理科学, 2018, 31(3): 112-124. 35 李东进, 张宇东. 消费者为何放弃: 量化自我持续参与意愿形成的内在机制[J]. 南开管理评论, 2018, 21(1): 118-131. 36 王巢琛, 徐跃权. 量化自我技术在图书馆应用的探讨[J]. 图书情报工作, 2018, 62(17): 44-52. 37 刘咏梅, 剧晓红. 量化自我在健康领域的应用——基于大数据的角度[J]. 情报资料工作, 2018(4): 56-63. 38 邓胜利, 夏苏迪, 韦佳岑. 基于生活信息学模型的个人健康信息管理研究[J]. 情报资料工作, 2021, 42(2): 23-30. 39 范钧, 吴丽萍. 在线社会支持对慢性病患者量化自我持续参与意愿的影响研究[J]. 管理学报, 2021, 18(4): 597-603. 40 Spasser M A. Informing information science: the case for activity theory[J]. Journal of the American Society for Information Science, 1999, 50(12): 1136-1138. 41 周文博. 活动理论及其在图书馆情报学领域的应用[J]. 情报学报, 2020, 39(3): 274-283. 42 孙晓宁, 赵宇翔, 朱庆华. 社会化搜索行为的结构与过程研究: 基于活动理论的视角[J]. 中国图书馆学报, 2018, 44(2): 27-45. 43 Wilson T D. Activity theory and information seeking[J]. Annual Review of Information Science and Technology, 2008, 42(1): 119-161. 44 Zhao Y C, Zhang Y, Tang J, et al. Affordances for information practices: theorizing engagement among people, technology, and sociocultural environments[J]. Journal of Documentation, 2020, 77(1): 229-250. 45 Régnier F, Chauvel L. Digital inequalities in the use of self-tracking diet and fitness apps: interview study on the influence of social, economic, and cultural factors[J]. JMIR mHealth and uHealth, 2018, 6(4): e101. 46 Estrin D. Small data, where n=me[J]. Communications of the ACM, 2014, 57(4): 32-34. 47 陈辉. 小数据之美: 精准捕捉未来的商业小趋势[M]. 北京: 中信出版社, 2019. 48 Almalki M, Gray K, Martin-Sanchez F. Activity theory as a theoretical framework for health self-quantification: a systematic review of empirical studies[J]. Journal of Medical Internet Research, 2016, 18(5): e131. 49 Gabriels K, Moerenhout T. Exploring entertainment medicine and professionalization of self-care: interview study among doctors on the potential effects of digital self-tracking[J]. Journal of Medical Internet Research, 2018, 20(1): e10. 50 Chung C F, Cook J, Bales E, et al. More than telemonitoring: health provider use and nonuse of life-log data in irritable bowel syndrome and weight management[J]. Journal of Medical Internet Research, 2015, 17(8): e203. 51 Ghosh I, Singh V. Phones, privacy, and predictions: a study of phone logged data to predict privacy attitudes of individuals[J]. Online Information Review, 2020, 44(2): 483-502. 52 赵宇翔, 张轩慧, 宋小康. 移动社交媒体环境下用户错失焦虑症(FoMO)的研究回顾与展望[J]. 图书情报工作, 2017, 61(8): 133-144. 53 Swan M. Crowdsourced health research studies: an important emerging complement to clinical trials in the public health research ecosystem[J]. Journal of Medical Internet Research, 2012, 14(2): e46. 54 马费成, 李志元. 新文科背景下我国图书情报学科的发展前景[J]. 中国图书馆学报, 2020, 46(6): 4-15. 55 Pian W J, Song S J, Zhang Y. Consumer health information needs: a systematic review of measures[J]. Information Processing & Management, 2020, 57(2): 102077. 56 Ancker J S, Witteman H O, Hafeez B, et al. The invisible work of personal health information management among people with multiple chronic conditions: qualitative interview study among patients and providers[J]. Journal of Medical Internet Research, 2015, 17(6): e137. 57 Kim S, Huber J T. Characteristics of personal health information management groups: findings from an online survey using Amazon’s mTurk[J]. Journal of the Medical Library Association, 2017, 105(4): 361-375. 58 Pratt W, Unruh K, Civan A, et al. Personal health information management[J]. Communications of the ACM, 2006, 49(1): 51-55. 59 Kim S, Sinn D, Syn S Y. Analysis of college students' personal health information activities: online survey[J]. Journal of Medical Internet Research, 2018, 20(4): e132. 60 Heinstr?m J, Sormunen E, Savolainen R, et al. Developing an empirical measure of everyday information mastering[J]. Journal of the Association for Information Science and Technology, 2020, 71(7): 729-741. |
|
|
|