|
|
Multi-Dimensional Knowledge Reorganization and Visualization of History Books: Based on Records of the Grand Historian |
Zhang Qi1,3, Wang Dongbo2, Huang Shuiqing2, Deng Sanhong1,3 |
1.School of Information Management, Nanjing University, Nanjing 210023 2.College of Information Management, Nanjing Agricultural University, Nanjing 210095 3.Jiangsu Key Laboratory of Data Engineering and Knowledge Service, Nanjing 210023 |
|
|
Abstract Because the grammar and linear presentation in ancient Chinese are two major obstacles for non-specialists to obtain information from ancient Chinese history books, the reorganization and re-presentation of the knowledge in history books is required. This implies supporting the knowledge acquisition from multiple dimensions (such as time, people, and places), and presenting the returned structured knowledge with the corresponding original text from history books in the form of a graph. This is expected to solve the aforementioned limitations and bring readers closer to the original text in history books. However, although some researches extract knowledge based on the original text, there is little automation, and the visualization of knowledge is mostly separated from the history books. In this study, we propose a system that includes three aspects, namely multidimensional modeling of the knowledge in history books, multidimensional-knowledge-based construction, and visualization platform realization. Finally, we apply the proposed system to Records of the Grand Historian (Shiji) by reorganizing the automated books and constructing a visual platform on different dimensions such as characters, time, places, social groups, and official positions.
|
Received: 04 November 2020
|
|
|
|
1 欧阳剑. 面向数字人文研究的大规模古籍文本可视化分析与挖掘[J]. 中国图书馆学报, 2016, 42(2): 66-80. 2 Larkin J H, Simon H A. Why a diagram is (sometimes) worth ten thousand words[J]. Cognitive Science, 1987, 11(1): 65-100. 3 徐国利. 钱穆论史体与史书[J]. 史学史研究, 2000(4): 53-60. 4 《中华传统文化大观》编纂委员会. 中华传统文化大观[M]. 北京: 中国大百科全书出版社, 1993: 319-324. 5 白寿彝. 白寿彝史学论集(下)[M]. 北京: 北京师范大学出版社, 1994: 658-659. 6 耿元骊. 欧美地区的古代中国数字资源概述[M]// 包伟民, 戴建国. 开拓与创新——宋史学术前沿论坛文集. 上海: 中西书局, 2019: 89-107. 7 China Biographical Database Project (CBDB)[DB/OL]. [2018-01-01]. https://projects.iq.harvard.edu/cbdb. 8 全历史[DB/OL]. [2019-09-02]. https://www.allhistory.com/. 9 董慧, 徐雷, 王菲, 等. 语义分析系统研究(Ⅲ)——中华史籍语义分析系统实现[J]. 情报学报, 2014, 33(2): 204-214. 10 黄水清. 人文计算与数字人文: 概念、问题、范式及关键环节[J]. 图书馆建设, 2019(5): 68-78. 11 MARKUS - is a reading and text analysis platform with a wide range of functionality[DB/OL]. [2014-01-01]. http://dh.chinese-empires.eu/markus. 12 冯秋香, 汪榕培. 数据库语义学在古汉语自动分析上的应用[J]. 大连理工大学学报, 2012, 52(6): 902-907. 13 Li F, Zhang M S, Fu G H, et al. A Bi-LSTM-RNN model for relation classification using low-cost sequence features[OL]. (2016-08-27). https://arxiv.org/pdf/1608.07720v1.pdf. 14 陈雅玲. 基于CIDOC CRM的先秦人物知识本体构建方法研究[D]. 南京: 南京农业大学, 2019. 15 于丽丽, 丁德鑫, 曲维光, 等. 基于条件随机场的古汉语词义消歧研究[J]. 微电子学与计算机, 2009, 26(10): 45-48. 16 Auer S, Bizer C, Kobilarov G, et al. DBpedia: a nucleus for a web of open data[C]// Proceedings of the International Semantic Web Conference/Asian Semantic Web Conference: The Semantic Web. Heidelberg: Springer, 2007: 722-735. 17 Niu X, Sun X R, Wang H F, et al. Zhishi.me-weaving Chinese linking open data[C]// Proceedings of the International Semantic Web Conference: The Semantic Web. Heidelberg: Springer, 2011: 205-220. 18 Hoffart J, Suchanek F M, Berberich K, et al. YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia[J]. Artificial Intelligence, 2013, 194: 28-61. 19 侯旭东. “制度”如何成为了“制度史”[J]. 中国社会科学评价, 2019(1): 68-83, 143. 20 Heider F. Attitudes and cognitive organization[J]. The Journal of Psychology, 1946, 21(1): 107-112. 21 Doreian P, Mrvar A. Structural balance and signed international relations[J]. Journal of Social Structure, 2019, 16(1): 1-49. 22 Golshan P N, Dashti H A R, Azizi S, et al. A study of recent contributions on information extraction[OL]. (2018-03-15). https://arxiv.org/ftp/arxiv/papers/1803/1803.05667.pdf. 23 漆桂林, 高桓, 吴天星. 知识图谱研究进展[J]. 情报工程, 2017, 3(1): 4-25. 24 刘颖, 王楠. 古汉语与现代汉语句子对齐研究[J]. 计算机应用与软件, 2013, 30(11): 127-130. 25 欧石燕. 语义网与数字图书馆[M]. 南京: 南京大学出版社, 2017: 28-29. 26 World Wide Web consortium. RDF access to relational database[EB/OL]. [2003-01-21]. http://www.w3.org/2003/01/21-RDF-RDB- access. 27 Angles R, Gutierrez C. Survey of graph database models[J]. ACM Computing Surveys, 2008, 40(1): 1-39. 28 赵军, 刘康, 何世柱, 等. 知识图谱[M]. 北京: 高等教育出版社, 2018: 162-167. 29 Miller J J. Graph database applications and concepts with Neo4j[C]// Proceedings of the Southern Association for Information Systems Conference, 2013: Article No. 24. |
|
|
|