|
|
Research on Text Matching Model Based on Deep Interaction |
Yu Chuanming, Xue Haodong, Jiang Yifan |
School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073 |
|
|
Abstract For the application of text matching in information retrieval, text mining, and other research fields, a deep interactive text matching (DITM) model with good generalization ability is proposed. Based on the matching-aggregation framework, the encoder layer, co-attention layer, and fusion layer are used as an interaction module. The interaction process is iterated multiple times to obtain the in-depth interaction information. Finally, information is extracted through multi-perspective pooling to predict the relationship between text pairs. Compared with baseline methods, the proposed approach has achieved best results on four text matching tasks, namely opinion retrieval, answer selection, paraphrase identification, and natural language inference. The experimental results are of great significance to promote the practice of text matching models in the field of information.
|
Received: 26 October 2020
|
|
|
|
1 Yang R Q, Zhang J H, Gao X, et al. Simple and effective text matching with richer alignment features[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2019: 4699-4709. 2 范意兴, 郭嘉丰, 兰艳艳, 等. 基于上下文的深度语义句子检索模型[J]. 中文信息学报, 2017, 31(5): 156-162. 3 Ko B W, Choi H J. Twice fine-tuning deep neural networks for paraphrase identification[J]. Electronics Letters, 2020, 56(9): 444-447. 4 Al-Smadi M, Jaradat Z, Al-Ayyoub M, et al. Paraphrase identification and semantic text similarity analysis in Arabic news tweets using lexical, syntactic, and semantic features[J]. Information Processing & Management, 2017, 53(3): 640-652. 5 冯文政, 唐杰. 融合深度匹配特征的答案选择模型[J]. 中文信息学报, 2019, 33(1): 118-124. 6 吴少洪, 彭敦陆, 苑威威, 等. MGSC: 一种多粒度语义交叉的短文本语义匹配模型[J]. 小型微型计算机系统, 2019, 40(6): 1148-1152. 7 余传明, 郭亚静, 朱星宇, 等. 基于最大边界相关度的抽取式文本摘要模型研究[J]. 情报科学, 2021, 39(2): 34-43. 8 汤文兵, 任正云, 韩芳. 基于注意力机制的协同卷积动态推荐网络[J/OL]. 自动化学报. (2020-04-07) [2020-07-08]. https://doi.org/10.16383/j.aas.c190820. 9 沈思, 孙豪, 王东波. 基于深度学习表示的医学主题语义相似度计算及知识发现研究[J]. 情报理论与实践, 2020, 43(5): 183-190. 10 颜端武, 杨雄飞, 李铁军. 基于产品特征树和LSTM模型的产品评论情感分析[J]. 情报理论与实践, 2019, 42(12): 134-138. 11 倪维健, 郭浩宇, 刘彤, 等. 基于多头自注意力神经网络的购物篮推荐方法[J]. 数据分析与知识发现, 2020, 4(2/3): 68-77. 12 李伟卿, 王伟军. 基于大规模评论数据的产品特征词典构建方法研究[J]. 数据分析与知识发现, 2018, 2(1): 41-50. 13 章成志, 张颖怡. 基于学术论文全文的研究方法实体自动识别研究[J]. 情报学报, 2020, 39(6): 589-600. 14 林德明, 王宇开, 丁堃. 基于语义识别的知识产权战略政策工具选择[J]. 情报学报, 2020, 39(2): 178-185. 15 Griffiths T L, Steyvers M. Finding scientific topics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(suppl 1): 5228-5235. 16 Huang P S, He X D, Gao J F, et al. Learning deep structured semantic models for web search using clickthrough data[C]// Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York: ACM Press, 2013: 2333-2338. 17 Hu B T, Lu Z D, Li H, et al. Convolutional neural network architectures for matching natural language sentences[C]// Proceedings of the Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2042-2050. 18 Tan M, dos Santos C, Xiang B, et al. Improved representation learning for question answer matching[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 464-473. 19 Tai K S, Socher R, Manning C D. Improved semantic representations from tree-structured long short-term memory networks[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 1556-1566. 20 Lu W P, Zhang X, Lu H M, et al. Deep hierarchical encoding model for sentence semantic matching[J]. Journal of Visual Communication and Image Representation, 2020, 71: 102794. 21 Peters M E, Neumann M, Iyyer M, et al. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2018: 2227-2237. 22 Radford A, Narasimhan K, Salimans T, et al. Improving language understanding by generative pre-training[OL]. [2020-06-24]. https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018 improving.pdf. 23 Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2019: 4171-4186. 24 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Proceedings of the Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2017: 5998-6008. 25 Liu Y H, Ott M, Goyal N, et al. RoBERTa: a robustly optimized BERT pretraining approach[OL]. (2019-07-26) [2020-06-17]. https://arxiv.org/pdf/1907.11692.pdf. 26 Reimers N, Gurevych I. Sentence-BERT: sentence embeddings using Siamese BERT-networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2019: 3982-3992. 27 Wan S X, Lan Y Y, Guo J F, et al. A deep architecture for semantic matching with multiple positional sentence representations[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2016: 2835-2841. 28 Pang L, Lan Y, Guo J, et al. Text matching as image recognition[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2016: 2793-2799. 29 Yang L, Ai Q Y, Guo J F, et al. aNMM: ranking short answer texts with attention-based neural matching model[C]// Proceedings of the 25th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2016: 287-296. 30 Gong Y C, Luo H, Zhang J. Natural language inference over interaction space[OL]. (2018-05-26) [2020-04-02]. https://arxiv.org/pdf/1709.04348.pdf. 31 Wang S H, Jiang J. A compare-aggregate model for matching text sequences[OL]. (2016-11-06) [2020-06-17]. https://arxiv.org/pdf/1611.01747.pdf. 32 Wang Z G, Hamza W, Florian R. Bilateral multi-perspective matching for natural language sentences[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Press, 2017: 4144-4150. 33 Chen Q, Zhu X D, Ling Z H, et al. Enhanced LSTM for natural language inference[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 1657-1668. 34 Tay Y, Luu A T, Hui S C. Compare, compress and propagate: enhancing neural architectures with alignment factorization for natural language inference[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2018: 1565-1575. 35 Kim S, Kang I, Kwak N. Semantic sentence matching with densely-connected recurrent and co-attentive information[C]// Proceedings of the 33th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019, 33: 6586-6593. 36 Parikh A, T?ckstr?m O, Das D, et al. A decomposable attention model for natural language inference[C]// Proceedings of the Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2016: 2249-2255. 37 Kolhatkar V, Wu H H, Cavasso L, et al. The SFU opinion and comments corpus: a corpus for the analysis of online news comments[J]. Corpus Pragmatics, 2020, 4: 155-190. 38 Yang Y, Yih W T, Meek C. WikiQA: a challenge dataset for open-domain question answering[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 2013-2018. 39 Khot T, Sabharwal A, and Clark P. SciTail: a textual entailment dataset from science question answering[C]// Proceedings of the 32th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 5189-5197. 40 Pennington J, Socher R, Manning C. GloVe: global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2014: 1532-1543. 41 Lan W W, Xu W. Neural network models for paraphrase identification, semantic textual similarity, natural language inference, and question answering[C]// Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2018: 3890-3902. 42 Tay Y, Luu A T, Hui S C. Hermitian co-attention networks for text matching in asymmetrical domains[C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Press, 2018: 4425-4431. |
|
|
|