|
|
Construction of Scenario Graph for a Major Emergency |
Zhang Haitao1,2,3, Liu Weili1, Luan Yu1, Liu Yan1 |
1.School of Management, Jilin University, Changchun 130022 2.Research Center of Information Resources of Jilin University, Changchun 130022 3.Institute of National Development and Security Studies, Jilin University, Changchun 130022 |
|
|
Abstract The event-centered construction of a major-emergency scenario graph can not only describe the state of the scenario elements but also reflect the development trend of major emergencies; therefore, we propose a method for constructing such a graph. First, we analyze the factors that affect the occurrence, development, and mutation of events; next, we explore, in-depth, the internal connections between them to build a scenario model to describe the state of these factors and connections between them. Second, under the guidance of the scenario model, we construct the upper-level scenario ontology and propose a method of using deep learning to construct a lower-level scenario ontology. Finally, we propose the process of constructing the scenario graph, construct the drought scene ontology through event extraction and event relationship extraction, and instantiate the scene ontology to establish a scene graph of the catastrophic drought in Jilin Province in 2007. The empirical results show that the scenario graph constructed in this study can not only describe the current development state of a major emergency but also explain the internal motivation of the event’s development and evolution and predict its future development trend.
|
Received: 23 June 2021
|
|
|
|
1 中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议[EB/OL]. (2020-11-03) [2021-04-19]. http://www.gov.cn/zhengce/2020-11/03/content_5556991.htm. 2 仲秋雁, 郭艳敏, 王宁, 等. 基于知识元的非常规突发事件情景模型研究[J]. 情报科学, 2012, 30(1): 115-120. 3 戎军涛, 王莉英. 基于本体的公共危机事件情景模型研究[J]. 现代情报, 2016, 36(6): 50-55. 4 王循庆, 李勇建, 孙华丽. 基于随机Petri网的群体性突发事件情景演变模型[J]. 管理评论, 2014, 26(8): 53-62, 116. 5 中华人民共和国突发事件应对法(主席令第六十九号)[EB/OL]. (2007-08-30) [2021-06-21]. http://www.gov.cn/zhengce/2007- 08/30/content_2602205.htm. 6 袁辉. 重大突发事件及其应急决策研究[J]. 安全, 1996(2): 1-4, 8. 7 Wilson D T, Hawe G I, Coates G, et al. A multi-objective combinatorial model of casualty processing in major incident response[J]. European Journal of Operational Research, 2013, 230(3): 643-655. 8 陈志宗, 尤建新. 重大突发事件应急救援设施选址的多目标决策模型[J]. 管理科学, 2006, 19(4): 10-14. 9 徐绪堪, 李一铭. 基于情景相似度的突发事件多粒度响应模型研究[J]. 情报科学, 2021, 39(2): 18-23, 43. 10 种大双, 孙绍荣. 基于传染病模型的重大突发事件舆情传播与控制[J]. 情报理论与实践, 2018, 41(5): 104-109. 11 宗蓓华. 战略预测中的情景分析法[J]. 预测, 1994(2): 50-51, 55. 12 姜卉, 黄钧. 罕见重大突发事件应急实时决策中的情景演变[J]. 华中科技大学学报(社会科学版), 2009, 23(1): 104-108. 13 刘铁民. 重大突发事件情景规划与构建研究[J]. 中国应急管理, 2012(4): 18-23. 14 张志霞, 郝纹慧, 张二双. 网络舆情驱动下突发事件情景推演研究[J]. 情报科学, 2020, 38(5): 141-147. 15 Helbing D, Ammoser H, Kühnert C. Disasters as extreme events and the importance of network interactions for disaster response management[M]// Extreme Events in Nature and Society. Heidelberg: Springer, 2006: 319-348. 16 Gruber T R. A translation approach to portable ontology specifications[J]. Knowledge Acquisition, 1993, 5(2): 199-220. 17 Lagoze C, Hunter J. The ABC ontology and model[C]// Proceedings of the International Conference on Dublin Core and Metadata Applications. Tokyo: National Institute of Informatics, 2001: 160-176. 18 Kaneiwa K, Iwazume M, Fukuda K. An upper ontology for event classifications and relations[C]// Proceedings of the Australasian Joint Conference on Artificial Intelligence. Heidelberg: Springer, 2007: 394-403. 19 朱文跃, 刘宗田. 基于事件本体的突发事件领域知识建模[J]. 计算机工程与应用, 2018, 54(21): 148-155. 20 李淮春. 马克思主义哲学全书[M]. 北京: 中国人民大学出版社, 1996: 642. 21 向洪. 四项基本原则大辞典[M]. 成都: 电子科技大学出版社, 1992: 369-370. 22 刘樑, 许欢, 李仕明. 非常规突发事件应急管理中的情景及情景-应对理论综述研究[J]. 电子科技大学学报(社科版), 2013, 15(6): 20-24. 23 范维澄, 刘奕, 翁文国. 公共安全科技的“三角形”框架与“4+1”方法学[J]. 科技导报, 2009, 27(6): 3. 24 刘宗田, 黄美丽, 周文, 等. 面向事件的本体研究[J]. 计算机科学, 2009, 36(11): 189-192, 199. 25 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国国家标准: GB/T 35561-2017突发事件分类与编码[S]. 北京: 中国标准出版社, 2017. 26 Cui Y M, Che W X, Liu T, et al. Revisiting pre-trained models for Chinese natural language processing[C]// Proceedings of the Conference on Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: Association for Computational Linguistics, 2020: 657-668. |
|
|
|