|
|
Research on the Path of Patent Innovation Technology Opportunities and Their Evaluation |
Feng Lijie1,2, You Hongyu1, Wang Jinfeng1,2 |
1.School of Management Engineering, Zhengzhou University, Zhengzhou 450001 2.School of Economics & Management, Shanghai Maritime University, Shanghai 201306 |
|
|
Abstract Accurately identifying innovation technology opportunities in massive patent information is a key measure to reduce corporate innovation risk. This study relies on the multidimensional map of technology innovation to build a path for identifying innovation technology opportunities. First, we use the Latent Dirichlet Allocation (LDA) algorithm to extract technical elements and topics from many patent documents. Second, we navigate and classify technical innovation elements combined with the multidimensional map of technology innovation, and then explore multiple potential technological innovation paths and multiple innovation rules. Third, the TextRank-IDF novelty evaluation index is proposed to sort the innovation opportunities to identify innovation paths with a higher value. Finally, the technical innovation of submersible motors is considered as an example to verify the technology opportunity discovery path's effectiveness. The results show that the technological innovation path under the massive patent information constructed in this study can provide a useful reference for companies to choose innovation schemes and continuously improve innovation efficiency scientifically.
|
Received: 27 March 2020
|
|
|
|
1 Lee J, Kim C, Shin J. Technology opportunity discovery to R&D planning: key technological performance analysis[J]. Technological Forecasting and Social Change, 2017, 119: 53-63. 2 Park I, Yoon B. Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network[J]. Journal of Informetrics, 2018, 12(4): 1199-1222. 3 Park Y, Yoon J. Application technology opportunity discovery from technology portfolios: use of patent classification and collaborative filtering[J]. Technological Forecasting and Social Change, 2017, 118: 170-183. 4 Rodriguez A, Tosyali A, Kim B, et al. Patent clustering and outlier ranking methodologies for attributed patent citation networks for technology opportunity discovery[J]. IEEE Transactions on Engineering Management, 2016, 63(4): 426-437. 5 Kim B, Gazzola G, Yang J, et al. Two-phase edge outlier detection method for technology opportunity discovery[J]. Scientometrics, 2017, 113(1): 1-16. 6 Yoon J, Park H, Seo W, et al. Technology opportunity discovery (TOD) from existing technologies and products: a function-based TOD framework[J]. Technological Forecasting and Social Change, 2015, 100: 153-167. 7 王金凤, 吴敏, 岳俊举, 等. 创新过程的技术机会识别路径研究——基于专利挖掘和形态分析[J]. 情报理论与实践, 2017, 40(8): 82-86. 8 马婷婷, 汪雪锋, 朱东华, 等. 基于专利的技术机会分析方法研究[J]. 科学学研究, 2014, 32(3): 334-342,383. 9 Kaplan S, Vakili K. The double-edged sword of recombination in breakthrough innovation[J]. Strategic Management Journal, 2015, 36(10): 1435-1457. 10 Lee C, Kang B, Shin J. Novelty-focused patent mapping for technology opportunity analysis[J]. Technological Forecasting and Social Change, 2015, 90: 355-365. 11 Wang J T, Chen Y J. A novelty detection patent mining approach for analyzing technological opportunities[J]. Advanced Engineering Informatics, 2019, 42: 100941. 12 吴菲菲, 栾静静, 黄鲁成, 等. 基于新颖性和领域交叉性的知识前沿性专利识别——以老年福祉技术为例[J]. 情报杂志, 2016, 35(5): 85-90. 13 任海英, 邵文, 李欣. 基于专利内容新颖性和常规性的突破性发明影响因素和研发策略分析[J]. 情报杂志, 2019, 38(2): 56-63. 14 岳俊举, 冯立杰, 冯奕程, 等. 基于多维技术创新地图与关联规则挖掘的技术机会识别方法研究[J]. 情报学报, 2017, 36(8): 798-808. 15 冯立杰, 吴敏, 王金凤, 等. 面向低端市场颠覆式创新的技术机会识别路径研究[J]. 软科学, 2019, 33(4): 91-98. 16 陈伟, 林超然, 李金秋, 等. 基于LDA-HMM的专利技术主题演化趋势分析——以船用柴油机技术为例[J]. 情报学报, 2018, 37(7): 732-741. 17 Naumanen M, Uusitalo T, Huttunen-Saarivirta E, et al. Development strategies for heavy duty electric battery vehicles: comparison between China, EU, Japan and USA[J]. Resources Conservation and Recycling, 2019, 151: 104413. 18 Hoffman M D, Blei D M, Bach F. Online learning for Latent Dirichlet Allocation[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2010: 856-864. 19 张子振, 储煜桂, 吴小兰. 基于LDA的多源文献主题及其差异研究——以“机器学习”为例[J]. 情报科学, 2019, 37(6): 108-112, 150. 20 鲍晓华, 李福英, 方勇, 等. 大型潜水电机混合偏心时转子副临界振动的研究[J]. 电工技术学报, 2015, 30(6): 142-149. 21 AlSumait L, Barbará D, Domeniconi C. On-line LDA: adaptive topic models for mining text streams with applications to topic detection and tracking[C]// Proceedings of the 2008 Eighth IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2008: 3-12. 22 李增亮, 张琦, 于然, 等. 计及温度边界条件变化的潜水电机磁热流耦合模型分析[J]. 微电机, 2018, 51(11): 18-26. 23 Liang X D. Temperature estimation and vibration monitoring for induction motors and the potential application in electrical submersible motors: a review[J]. Canadian Journal of Electrical and Computer Engineering, 2019, 42(3): 148-162. 24 Sushkov V V, Timoshkin V V, Sukhachev I S, et al. Evaluation of submersible electric motor insulation residual resource in oil production electric centrifugal pumps under the influence of impulse overvoltages[J]. Bulletin of the Tomsk Polytechnic University-Geo Assets Engineering, 2017, 328(10): 74-80. 25 李国景, 韩素茹. 两栖卧式运行潜水电泵的设计[J]. 煤矿机械, 2014, 35(6): 20-22. 26 李永海, 李晓光, 赖锋, 等. 推力轴承推力盘热变形研究[J]. 哈尔滨理工大学学报, 2018, 23(2): 120-123. 27 王帅. 大功率卧式潜水电机的开发及应用[J]. 煤矿机械, 2014, 35(5): 152-154. 28 徐明, 陈亮. 基于文献综述视角的专利质量理论研究[J]. 情报杂志, 2018, 37(12): 28-35. |
|
|
|