|
|
Research on the Topic Clustering Graph and the Transmission Path of Micro-blogging Users amid COVID-19 Based on the LDA Model |
Zhang Liu1, Wang Xiwei1,2,3,5, Huang Bo4, Liu Tingyan1 |
1.School of Management, Jilin University, Changchun 130022 2.Research Center for Big Data Management, Jilin University, Changchun 130022 3.Research Center of Cyberspace Governance, Jilin University, Changchun 130022 4.School of Computer Science and Technology, Jilin University, Changchun 130022 5.Academy of Northeast Revitalization, Jilin University, Changchun 130022 |
|
|
Abstract The topic clustering graph of micro-blogging users of the “Japan Diamond Princess” based on the Latent Dirichlet Allocation (LDA) model can more accurately and effectively identify the topic characteristics and opinion leaders of micro-blogging users. Further, it can analyze the topic transmission path between network communities during the pandemic, thereby helping the public opinion supervision department conduct more effective guidance and supervision of public opinion. Based on the LDA model, this paper builds the topic clustering graph of micro-blogging users amid the COVID-19 pandemic. In doing so, it uses the perplexity evaluation index to determine the optimal number of topics and their distribution for micro-blogging users, and uses the network users to forward comments to build a micro-blogging user topic cluster graph. Additionally, it puts forward the analysis method of the topic transmission path among the network communities, combined with the topic of public opinion during the global COVID-19 pandemic, the “Japan Diamond Princess.” Thus, this study aims to determine the topic of the micro-blogging user group, identify the subject opinion leaders, and analyze the topic transmission path among network communities under this topic. The research results show that based on the LDA model, it is possible to identify the topic of the online community and discover the derived public opinion topics. Through the identification of opinion leaders, it is possible to guide public opinion more efficiently. Through the analysis of the topic transmission path of the online community and topic push, the better guidance of public opinion and network ecological governance can be achieved.
|
Received: 30 April 2020
|
|
|
|
1 百度营销. 百度App用户战疫实录: 每天超10亿人搜索新冠肺炎信息[EB/OL]. (2020-02-20) [2020-02-25]. http://so.baidu.com/news/xydt/2543.html. 2 Theja Bhavaraju S K, Beyney C, Nicholson C. Quantitative analysis of social media sensitivity to natural disasters[J]. International Journal of Disaster Risk Reduction, 2019, 39: 101251. 3 Kumar A, Singh J P, Dwivedi Y K, et al. A deep multi-modal neural network for informative Twitter content classification during emergencies[J/OL]. Annals of Operations Research. (2020-01-16). https://doi.org/10.1007/s10479-020-03514-x. 4 Ray A, Bala P K. Social media for improved process management in organizations during disasters[J]. Knowledge and Process Management, 2020, 27(1): 63-74. 5 唐明伟, 苏新宁, 王昊. 突发事件应急响应情报体系案例解析——以公共安全事件为例[J]. 情报科学, 2019, 37(1): 105-111. 6 李明, 李莹, 许应成. 突发事件环境下的虚拟问答社区知识可信度影响因素研究[J]. 情报理论与实践,2019, 42(9): 128-132, 145. 7 刘建准, 唐霈雯, 石密, 等. 突发事件应急管理中情报介入与融合模型研究[J]. 图书情报工作, 2019, 63(18): 78-86. 8 于晓虹, 楼际通, 楼文高, 等. 突发事件网络舆情风险评价的投影寻踪建模与实证研究[J]. 情报科学, 2019, 37(11): 79-88. 9 樊舒, 孙鹏. 基于实时视频的应急决策情报体系构建[J]. 情报杂志, 2019, 38(6): 17-22. 10 人民网. 人民网评: 警惕疫情“第二波”, 哪怕“十防九空”[EB/OL]. (2020-01-30) [2020-02-26]. http://opinion.people.com.cn/BIG5/ n1/2020/0130/c1003-31564992.html. 11 Bailón-Elvira J C, Cobo M J, Herrera-Viedma E, et al. Latent Dirichlet Allocation (LDA) for improving the topic modeling of the official bulletin of the spanish state (BOE)[J]. Procedia Computer Science, 2019, 162: 207-214. 12 Rashid J, Shah S M A, Irtaza A. Fuzzy topic modeling approach for text mining over short text[J]. Information Processing & Management, 2019, 56(6): 102060. 13 Pavlinek M, Podgorelec V. Text classification method based on self-training and LDA topic models[J]. Expert Systems with Applications, 2017, 80: 83-93. 14 Hagen L. Content analysis of e-petitions with topic modeling: how to train and evaluate LDA models?[J]. Information Processing & Management, 2018, 54(6): 1292-1307. 15 Du Y J, Yi Y T, Li X Y, et al. Extracting and tracking hot topics of micro-blogs based on improved Latent Dirichlet Allocation[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103279. 16 Ma T H, Li J, Liang X N, et al. A time-series based aggregation scheme for topic detection in Weibo short texts[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 536: 120972. 17 丁绪武, 吴忠, 夏志杰. 社会化电子商务用户兴趣图谱构建的研究[J]. 情报理论与实践, 2015, 38(3): 90-94. 18 林杰, 苗润生. 专业社交媒体中的主题图谱构建方法研究——以汽车论坛为例[J]. 情报学报, 2020, 39(1): 68-80. 19 刘雅姝, 张海涛, 徐海玲, 等. 多维特征融合的网络舆情突发事件演化话题图谱研究[J]. 情报学报, 2019, 38(8): 798-806. 20 朱晓霞, 宋嘉欣, 孟建芳. 基于动态主题——情感演化模型的网络舆情信息分析[J]. 情报科学, 2019, 37(7): 72-78. 21 Zareie A, Sheikhahmadi A, Jalili M. Identification of influential users in social networks based on users’interest[J]. Information Sciences, 2019, 493: 217-231. 22 王晰巍, 张柳, 文晴, 等. 基于贝叶斯模型的移动环境下网络舆情用户情感演化研究——以新浪微博“里约奥运会中国女排夺冠”话题为例[J]. 情报学报, 2018, 37(12): 1241-1248. 23 Alexa. Traffic detail (sina.com.cn)[EB/OL]. [2020-03-15]. http://www.alexa.com/siteinfo/www.sina.com.cn. 24 曾子明, 王婧. 基于LDA和随机森林的微博谣言识别研究——以2016年雾霾谣言为例[J]. 情报学报, 2019, 38(1): 89-96. 25 牟冬梅, 邵琦, 韩楠楠, 等. 微博舆情多维度社会属性分析与可视化研究——以某疫苗事件为例[J]. 图书情报工作, 2020, 64(3): 111-118. 26 王晰巍, 张柳, 韦雅楠, 等. 社交网络舆情中意见领袖主题图谱构建及关系路径研究——基于网络谣言话题的分析[J]. 情报资料工作, 2020, 41(2): 47-55. 27 陈思菁, 李纲, 毛进, 等. 突发事件信息传播网络中的关键节点动态识别研究[J]. 情报学报, 2019, 38(2): 178-190. 28 Hashemi A, Dowlatshahi M B, Nezamabadi-Pour H. MGFS: a multi-label graph-based feature selection algorithm via PageRank centrality[J]. Expert Systems with Applications, 2020, 142: 113024. 29 Huang W D, Wang Q, Cao J. Tracing public opinion propagation and emotional evolution based on public emergencies in social networks[J]. International Journal of Computers Communications & Control, 2018, 13(1): 129-142. 30 Haihong E, Hu Y X, Peng H P, et al. Theme and sentiment analysis model of public opinion dissemination based on generative adversarial network[J]. Chaos, Solitons & Fractals, 2019, 121: 160-167. |
|
|
|