|
|
Research on the Collaborative Model of Sentiment Analysis and Topic Mining of Micro-blogging Users in the Context of COVID-19 |
Wang Xiwei1,2,3,4, Li Yueqi1, Liu Tingyan1, Zhang Liu1 |
1.School of Management, Jilin University, Changchun 130022 2.Research Center for Big Data Management, Jilin University, Changchun 130022 3.Research Center of Cyberspace Governance, Jilin University, Changchun 130022 4.Academy of Northeast Revitalization, Jilin University, Changchun 130022 |
|
|
Abstract In the context of COVID-19, understanding users' emotions and the topics underlying them can help the relevant public departments improve their network governance capabilities. Based on the cognitive emotion evaluation model, this study constructed a collaborative model of sentiment analysis and topic mining using the Naive Bayesian Model to classify the sentiments. Further, it extracted the topics based on the improved Latent Dirichlet Allocation (LDA) topic model of the relevance formula. This study selected the event “Japan Diamond Cruise” amid COVID-19 as an example to draw a collaborative analysis including sentiment analysis and topic mining. Additionally, it studied the timeline of these events and determined the types of the topics through empirical tests to verify their emotion characteristics and the topics that users pay attention to. The results showed that the model proposed in this paper can reveal the topic and emotion characteristics at each stage of the event. The method of collaborative analysis of sentiment and topic presented in this paper can provide some guidance for public opinion supervision departments in improving the efficiency of public opinion guidance and achieving network ecological governance.
|
Received: 30 April 2020
|
|
|
|
1 Rexiline Ragini J, Rubesh Anand P M, Bhaskar V. Mining crisis information: a strategic approach for detection of people at risk through social media analysis[J]. International Journal of Disaster Risk Reduction, 2018, 27: 556-566. 2 Vo B K H, Collier N. Twitter emotion analysis in earthquake situations[J]. International Journal of Computational Linguistics and Applications, 2013, 4(1): 159-173. 3 Kaur W, Balakrishnan V, Rana O, et al. Liking, sharing, commenting and reacting on Facebook: user behaviors’ impact on sentiment intensity[J]. Telematics and Informatics, 2019, 39: 25-36. 4 Xiong X, Li Y Y, Qiao S J, et al. An emotional contagion model for heterogeneous social media with multiple behaviors[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 490: 185-202. 5 张柳, 王晰巍, 王铎, 等. 微博环境下高校舆情情感演化图谱研究——以新浪微博“高校学术不端”话题为例[J]. 现代情报, 2019, 39(10): 119-126, 135. 6 任中杰, 张鹏, 李思成, 等. 基于微博数据挖掘的突发事件情感态势演化分析——以天津8·12事故为例[J]. 情报杂志, 2019, 38(2): 140-148. 7 安璐, 欧孟花. 突发公共卫生事件利益相关者的社会网络情感图谱研究[J]. 图书情报工作, 2017, 61(20): 120-130. 8 廖海涵, 王曰芬, 关鹏. 微博舆情传播周期中不同传播者的主题挖掘与观点识别[J]. 图书情报工作, 2018, 62(19): 77-85. 9 王凯, 潘玮, 杨宝华. 基于OTSRM模型的话题情感演化分析[J]. 情报学报, 2019, 38(5): 534-542. 10 朱晓霞, 宋嘉欣, 孟建芳. 基于动态主题—情感演化模型的网络舆情信息分析[J]. 情报科学, 2019, 37(7): 72-78. 11 夏一雪. 基于舆情大数据的网民情感“衰减—转移”模型与实证研究[J]. 情报杂志, 2019, 38(3): 148-154. 12 Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(1): 993-1022. 13 Liu X, Burns A C, Hou Y J. An investigation of brand-related user-generated content on Twitter[J]. Journal of Advertising, 2017, 46(2): 236-247. 14 Karami A, Dahl A A, Turner-McGrievy G, et al. Characterizing diabetes, diet, exercise, and obesity comments on Twitter[J]. International Journal of Information Management, 2018, 38(1): 1-6. 15 Rosen-Zvi M, Griffiths T, Steyvers M, et al. The author-topic model for authors and documents[C]// Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence. Arlington: AUAI Press, 2004: 487-494. 16 张培晶, 宋蕾. 基于LDA的微博文本主题建模方法研究述评[J]. 图书情报工作, 2012, 56(24): 120-126. 17 Blei D M, Lafferty J D. Dynamic topic models[C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 113-120. 18 Lau J H, Collier N, Baldwin T. On-line trend analysis with topic models: #twitter trends detection topic model online[C]// Proceedings of COLING 2012. The COLING 2012 Organizing Committee, 2012: 1519-1534. 19 Loia V, Senatore S. A fuzzy-oriented sentic analysis to capture the human emotion in Web-based content[J]. Knowledge-Based Systems, 2014, 58: 75-85. 20 徐琳宏, 林鸿飞, 潘宇, 等. 情感词汇本体的构造[J]. 情报学报, 2008, 27(2): 180-185. 21 《知网》情感分析用词语集[EB/OL]. [2020-03-27]. http://www.keenage.com/download/sentiment.rar. 22 Taiwan University Semantic Dictionary[EB/OL]. [2020-03-27]. http://nlg18.Csie.ntu.edu.tw:8080/opinion/publ.html. 23 Pang B, Lee L, Vaithyanathan S. Thumbs up?: sentiment classification using machine learning techniques[C]// Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2002, 10: 79-86. 24 王晰巍, 张柳, 文晴, 等. 基于贝叶斯模型的移动环境下网络舆情用户情感演化研究——以新浪微博“里约奥运会中国女排夺冠”话题为例[J]. 情报学报, 2018, 37(12): 1241-1248. 25 范涛, 吴鹏, 曹琪. 基于深度学习的多模态融合网民情感识别研究[J]. 信息资源管理学报, 2020, 10(1): 39-48. 26 王晰巍, 邢云菲, 韦雅楠, 等. 大数据驱动的社交网络舆情用户情感主题分类模型构建研究——以“移民”主题为例[J]. 信息资源管理学报, 2020, 10(1): 29-38, 48. 27 张柳, 王晰巍, 黄博, 等. 基于字词向量的多尺度卷积神经网络微博评论的情感分类模型及实验研究[J]. 图书情报工作, 2019, 63(18): 99-108. 28 Nguyen N K, Le A C, Pham H T. Deep bi-directional long short-term memory neural networks for sentiment analysis of social data[C]// Proceedings of the International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making. Cham: Springer, 2016: 255-268. 29 Ortony A, Clore G L, Collins A. The cognitive structure of emotions[M]. Cambridge: Cambridge University Press, 1988. 30 金占勇, 田亚鹏, 白莽. 基于长短时记忆网络的突发灾害事件网络舆情情感识别研究[J]. 情报科学, 2019, 37(5): 142-147, 154. 31 郭尚波. 个性化情感建模方法的研究[D]. 太原: 太原理工大学, 2008. 32 Adam C, Herzig A, Longin D. A logical formalization of the OCC theory of emotions[J]. Synthese, 2009, 168(2): 201-248. 33 吴鹏, 李婷, 仝冲, 等. 基于OCC模型和LSTM模型的财经微博文本情感分类研究[J]. 情报学报, 2020, 39(1): 81-89. 34 徐源音, 柴玉梅, 王黎明, 等. 基于OCC模型和贝叶斯网络的情绪句分类方法[J]. 计算机科学, 2020, 47(3): 222-230. 35 李静梅, 孙丽华, 张巧荣, 等. 一种文本处理中的朴素贝叶斯分类器[J]. 哈尔滨工程大学学报, 2003, 24(1): 71-74. 36 Sievert C, Shirley K E. LDAvis: a method for visualizing and interpreting topics[C]// Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces. Stroudsburg: Association for Computational Linguistics, 2014: 63-70. 37 百度指数. “钻石公主号”百度指数[EB/OL]. [2020-08-03]. http: //index.baidu.com/v2/main/index.htm. 38 微博搜索. “钻石公主号”话题搜索[EB/OL]. [2020-08-03]. https://s.weibo.com/topic?. 39 罗闯, 安璐, 徐健, 等. 突发事件网络舆情关注点演化研究——基于利益相关者视角[J]. 图书馆学研究, 2018(16): 36-42. 40 贾亚敏, 安璐, 李纲. 城市突发事件网络信息传播时序变化规律研究[J]. 情报杂志, 2015, 34(4): 91-96, 90. 41 易承志. 群体性突发事件网络舆情的演变机制分析[J]. 情报杂志, 2011, 30(12): 6-12. 42 Pourebrahim N, Sultana S, Edwards J, et al. Understanding communication dynamics on Twitter during natural disasters: a case study of Hurricane Sandy[J]. International Journal of Disaster Risk Reduction, 2019, 37: 101176. 43 王树义, 廖桦涛, 吴查科. 基于情感分类的竞争企业新闻文本主题挖掘[J]. 数据分析与知识发现, 2018, 2(3): 70-78. 44 Qu Y, Huang C, Zhang P Y, et al. Microblogging after a major disaster in China: a case study of the 2010 Yushu earthquake[C]// Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work. New York: ACM Press, 2011: 25-34. 45 吴江, 赵颖慧, 高嘉慧. 医疗舆情事件的微博意见领袖识别与分析研究[J]. 数据分析与知识发现, 2019, 3(4): 53-62. 46 Hagen L, Keller T, Neely S, et al. Crisis communications in the age of social media: a network analysis of Zika-related tweets[J]. Social Science Computer Review, 2018, 36(5): 523-541. |
|
|
|