|
|
Link Prediction in Two-layer Knowledge Network Based on Network Representation Learning |
Cao Zhipeng, Pan Ding, Pan Qiliang |
Jinan University, Guangzhou 510632 |
|
|
Abstract In recent years, most link prediction algorithms have focused on the similarity of the knowledge network's topological characteristics, with less consideration of the author's research field, which lead to some problems, such as insufficient information utilization. This paper proposes hypernet2vec model, a link prediction model for a two-layer knowledge network. The two-layer knowledge network consists of the Co-author Network and Academic Field Relationship Network. The nodes in the two-layer network are mapped to a low-dimensional vector space by network representation learning, and then they are fed into a convolutional neural network, which is specially designed to calculate and predict future links. The empirical results of the evaluation on real-world networks demonstrate that the proposed algorithm achieves higher AUC (area under curve) value, with an average increase of 11.28%, and performs superior to other algorithms such as RA indicator, LP indicator, and LRW indicator. This paper also explores the underlying mechanism that affects the model's occurrence, from the level of intelligence generation and structure of complex systems.
|
Received: 16 December 2019
|
|
|
|
1 刘向. 知识网络的形成与演化[M]. 武汉: 武汉大学出版社, 2014: 5-8. 2 靖继鹏, 毕强. 情报学理论基础[M]. 长春: 吉林科学技术出版社, 1996: 26-44. 3 杨建林. 情报学基本原理的再认识[J]. 情报学报, 2019, 38(11): 1212-1221. 4 Lü L, Zhou T. Link prediction in complex networks: a survey[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390(6): 1150-1170. 5 张斌, 马费成. 科学知识网络中的链路预测研究述评[J]. 中国图书馆学报, 2015, 41(3): 99-113. 6 张金柱, 韩涛, 王小梅. 作者-关键词二分网络中的合著关系预测研究[J]. 图书情报工作, 2016, 60(21): 74-80. 7 项欣, 祁彬斌, 朱学芳. 二分属性知识网络的链路预测[J]. 情报理论与实践, 2019, 42(11): 150-155. 8 陈文杰, 许海云. 一种基于多元数据融合的引文网络知识表示方法[J]. 情报理论与实践, 2020, 43(1): 150-154, 134. 9 Cao S S, Lu W, Xu Q K. GraRep: learning graph representations with global structural information[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM Press, 2015: 891-900. 10 涂存超, 杨成, 刘知远, 等. 网络表示学习综述[J]. 中国科学: 信息科学, 2017, 47(8): 980-996. 11 张金柱, 于文倩, 刘菁婕, 等. 基于网络表示学习的科研合作预测研究[J]. 情报学报, 2018, 37(2): 132-139. 12 Tu C C, Zhang W C, Liu Z Y, et al. Max-margin DeepWalk: discriminative learning of network representation[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 3889-3895. 13 Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[C]// Proceedings of the 5th International Conference on Learning Representations. La Jolla: ICLR, 2017. 14 Yang C, Liu Z Y, Zhao D L, et al. Network representation learning with rich text information[C] // Proceedings of the 24th International Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 2111-2117. 15 Tu C C, Liu H, Liu Z Y, et al. CANE: context-aware network embedding for relation modeling[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 1722-1731. 16 Tu C C, Zhang Z Y, Liu Z Y, et al. TransNet: translation-based network representation learning for social relation extraction[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 2864-2870. 17 Grover A, Leskovec J. node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 855-864. 18 Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[OL]. (2013-09-07). https://arxiv.org/pdf/1301.3781v3.pdf. 19 Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2013, 2: 3111-3119. 20 Le Q, Mikolov T. Distributed representations of sentences and documents[J]. Proceedings of Machine Learning Research, 2014, 32(2): 1188-1196. 21 张斌. 科研合作网络的链路预测研究[M]. 北京: 科学出版社, 2018: 125-140. |
|
|
|