|
|
Patent Co-classification Based on Key Technology Identification and Research on Technology Development Mode |
Li Ruixi, Chen Xiangdong |
School of Economics and Management, Beihang University, Beijing 100191 |
|
|
Abstract On the basis of the co-classification data of invention patents in 35 technical fields granted in mainland China, an asymmetric technology knowledge flow network was constructed according to the main and supplementary international patent classifications. With the methods of centrality, structural hole, and intermediary analysis, the technology association structure, core technology, intermediary technology, and emerging technology in the technology-related network were identified. The results found that technical areas are frequently linked, creating a more mature network of core technology that stimulates other emerging technology areas. The entire technology field network consists of three types of intermediary roles—representative, consultant, and liaison—which is characterized by basic communication processes (BCP), mechanical elements (MEE), and digital communication (DIG). Through the important intermediarity and integration of chemical, mechanical engineering, and electrical engineering areas, the five major technical areas can achieve coordinated development.
|
Received: 05 December 2017
|
|
|
|
[1] Breschi S, Lissoni F, Maleraba F.Knowledge-relatedness in firm technological diversification[J]. Research Policy, 2003, 32(1): 69-87. [2] Lim H, Park Y.Identification of technological knowledge intermediaries[J]. Scientometrics, 2010, 84(3): 543-561. [3] Lee Y G, Song Y I.Selecting the key research areas in Nano-technology field using technology cluster analysis: A case study based on national R&D programs in South Korea[J]. Technovation, 2007, 27(1-2): 57-64. [4] Krafft J, Quatraro F, Saviotti P P.The knowledge base evolution in biotechnology: a social network analysis[J]. Economics of Innovation and New Technology, 2011, 20(5): 445-475. [5] 刘凤朝, 马荣康, 孙玉涛. 基于专利技术共类网络的纳米技术演化路径研究[J]. 科学学研究, 2012, 30(10): 1500-1508. [6] 栾春娟. 战略性新兴产业共性技术测度指标研究[J]. 科学学与科学技术管理, 2012, 33(2): 11-16. [7] 栾春娟. 基于专利共类的全球太阳能技术网络及关键技术演进分析[J]. 情报学报, 2013, 32(1): 68-79. [8] 黄晓斌, 梁辰. 专利技术的关联网络分析——以4G通信技术领域为例[J]. 情报学报, 2015, 34(1): 92-104. [9] 李佳佳, 马铁驹. 基于专利数据的风能核心技术识别及趋势分析[J]. 科技管理研究, 2017, 37(12): 129-136. [10] 周磊, 杨威. 基于专利IPC的技术知识流网络挖掘[J]. 现代情报, 2016, 36(1): 45-50. [11] Park H, Yoon J.Assessing coreness and intermediarity of technology sectors using patent co-classification analysis: the case of Korean national R&D[J]. Scientometrics, 2014, 98(2): 853-890. [12] 黄斌, 黄鲁成, 吴菲菲, 等. 基于专利共类的技术关联特征识别[J]. 情报杂志, 2015, 34(1): 44-48. [13] 周磊, 杨威. 基于专利的技术知识流特征研究[J]. 情报杂志, 2016, 35(5): 108-112. [14] 李蓓. 新兴技术发展路径及其识别技术研究——基于技术把门人和主导企业群的行为特征分析[D]. 北京: 北京航空航天大学, 2015. [15] 刘军. 整体网分析讲义: UCINET软件实用指南[M]. 上海: 格致出版社, 2009. [16] Burt R S.Structural holes: the social structure of competition[M]. Cambridge, MA: Harvard University Press, 1992. [17] Cho T S, Shih H Y.Patent citation network analysis of core and emerging technologies in Taiwan: 1997-2008[J]. Scientometrics, 2011, 89(3): 795-811. |
|
|
|