|
|
Domain-Oriented Deep Semantic Event Generalization |
Cao Gaohui1,2, Ren Weiqiang1, Ding Heng1 |
1.School of Information Management, Central China Normal University, Wuhan 430079 2.Hubei Data Governance and Intelligent Decision Research Center, Wuhan 430079 |
|
|
Abstract Event generalization is a key step in constructing event evolutionary graphs. However, the current frameworks for clustering-based and classification-based event generalization ignore the structural characteristics and dynamic changes of domain knowledge, and are thus unsuitable for event generalization in a limited domain. In this paper, we propose a domain-oriented event generalization framework based on deep semantic matching, comprised of two modules: deep semantic computing and seed event matching. This framework can effectively solve the problems of dynamic fusion of domain knowledge and event semantic alignment. Using tourism data as an example, the event generalization framework demonstrates better accuracy, stability, and migration ability than the existing clustering- and classification-based frameworks.
|
Received: 13 April 2020
|
|
|
|
1 刘挺. 从知识图谱到事理图谱[EB/OL]. (2017-11-14) [2019-12-07]. https://mp.weixin.qq.com/s?__biz=MzA5ODEzMjIyMA==&mid=2247496586&idx=1&sn=0a99c7adb32560ca8c3d77d34ec70a83&source=41#wechat_redirect. 2 周京艳, 刘如, 李佳娱, 等. 情报事理图谱的概念界定与价值分析[J]. 情报杂志, 2018, 37(5): 31-36, 42. 3 丁效. 句子级中文事件抽取关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. 4 Zacks J M, Tversky B. Event structure in perception and conception[J]. Psychological Bulletin, 2001, 127(1): 3-21. 5 Chung S, Timberlake A. Tense, aspect and mood[M]// Language Typology and Syntactic Description. Cambridge: Cambridge University Press, 1985: 202-258. 6 Doddington G R, Mitchell A, Przybocki M A, et al. The Automatic Content Extraction (ACE) program tasks, data, and evaluation[C]// Proceedings of the International Conference on Language Resources and Evaluation, 2004: 837-840. 7 项威, 王邦. 中文事件抽取研究综述[J]. 计算机技术与发展, 2020, 30(2): 1-6. 8 姜吉发. 一种事件信息抽取模式获取方法[J]. 计算机工程, 2005, 31(15): 96-98. 9 Ahn D. The stages of event extraction[C]// Proceedings of the Workshop on Annotating and Reasoning about Time and Events. Stroudsburg: Association for Computational Linguistics, 2006: 1-8. 10 李培峰, 周国栋, 朱巧明. 基于语义的中文事件触发词抽取联合模型[J]. 软件学报, 2016, 27(2): 280-294. 11 秦彦霞, 张民, 郑德权. 神经网络事件抽取技术综述[J]. 智能计算机与应用, 2018, 8(3): 1-5, 10. 12 张亚军, 刘宗田, 周文. 基于深度信念网络的事件识别[J]. 电子学报, 2017, 45(6): 1415-1423. 13 邱盈盈, 洪宇, 周文瑄, 等. 面向事件抽取的深度与主动联合学习方法[J]. 中文信息学报, 2018, 32(6): 98-106. 14 喻鑫, 张矩, 邱武松, 等. 基于序列标注算法比较的医学文献风险事件抽取研究[J]. 计算机应用与软件, 2017, 34(12): 58-63. 15 Chen Y B, Xu L H, Liu K, et al. Event extraction via dynamic multi-pooling convolutional neural networks[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 167-176. 16 黄细凤. 基于动态掩蔽注意力机制的事件抽取[J]. 计算机应用研究, 2020, 37(7): 1964-1968. 17 吴平博, 陈群秀, 马亮. 基于事件框架的事件相关文档的智能检索研究[J]. 中文信息学报, 2003, 17(6): 25-30, 59. 18 韩立炜. 基于本体的金融事件跟踪[D]. 哈尔滨: 哈尔滨工业大学, 2009. 19 Tatu M, Srikanth M. Experiments with reasoning for temporal relations between events[C]// Proceedings of the 22nd International Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2008: 857-864. 20 Cheng F, Miyao Y. Classifying temporal relations by bidirectional LSTM over dependency paths[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 1-6. 21 Zhao S D, Liu T, Zhao S C, et al. Event causality extraction based on connectives analysis[J]. Neurocomputing, 2016, 173: 1943-1950. 22 Zhao S D, Wang Q, Massung S, et al. Constructing and embedding abstract event causality networks from text snippets[C]// Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2017: 335-344. 23 单晓红, 庞世红, 刘晓燕, 等. 基于事理图谱的网络舆情演化路径分析——以医疗舆情为例[J]. 情报理论与实践, 2019, 42(9): 99-103, 85. 24 单晓红, 庞世红, 刘晓燕, 等. 基于事理图谱的政策影响分析方法及实证研究[J]. 复杂系统与复杂性科学, 2019, 16(1): 74-82. 25 Kim Y. Convolutional neural networks for sentence classification[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2014: 1746-1751. 26 Huang P S, He X D, Gao J F, et al. Learning deep structured semantic models for web search using clickthrough data[C]// Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York: ACM Press, 2013: 2333-2338. 27 Hu B T, Lu Z D, Li H, et al. Convolutional neural network architectures for matching natural language sentences[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014, 2: 2042-2050. 28 Pang L, Lan Y Y, Guo J F, et al. Text matching as image recognition[C]// Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 2793-2799. |
|
|
|