|
|
Research on the Identification of Academic Innovation Contributions of Full Academic Texts |
Zhou Haichen, Zheng Dejun, Li Tianyu |
College of Information Science & Technology, Nanjing Agricultural University, Nanjing 210095 |
|
|
Abstract In line with recent efforts to dismantle the “SCI supremacy” phenomenon, automatic identification of the innovation and contribution of academic research could greatly improve and support both peer review and evaluation of representative work. This study proposes a method for recognizing academic innovation and contribution based on a combination of deep learning and rules. First, we identify the potential phrases related to innovation and scientific contribution in academic texts. Second, we build an automatic recognition model based on BERT, develop fine-grained extraction rules, and apply them to extraction of large-scale data sets. To empirically test the method, we applied it to evaluate research texts in the field of chrysanthemums, and were able to successfully identify and extract potential academic innovation and contributions. Future study could expand this method to visualize innovation and contribution by specific scholars.
|
Received: 04 May 2020
|
|
|
|
1 Merton R K. The sociology of science: Theoretical and empirical investigations[M]. University of Chicago Press, 1979. 2 阎光才. 学术共同体内外的权力博弈与同行评议制度[J]. 北京大学教育评论, 2009, 7(1): 124-138, 191-192. 3 沈新尹. 引文计量与基础研究成果评价[J]. 科学学研究, 1995, 13(4): 74-76. 4 高一箴. 对SCI热的冷思考[J]. 情报科学, 2006, 24(1): 35-38. 5 Cole S, Rubin L, Cole J R. Peer review and the support of science[J]. Scientific American, 1977, 237(4): 34-41. 6 库恩. 科学革命的结构(选登)[J]. 李宝恒, 译. 自然辩证法通讯, 1980, 2(3): 71-77. 7 Hicks D, Wouters P, Waltman L, et al. Bibliometrics: The Leiden Manifesto for research metrics[J]. Nature, 2015, 520(7548): 429-431. 8 赵蓉英, 戴祎璠, 王旭. 基于LDA模型与ATM模型的学者影响力评价研究——以我国核物理学科为例[J]. 情报科学, 2019, 37(6): 3-9. 9 黄晨, 赵星, 卞杨奕, 等. 测量学术贡献的关键词分析法探析[J]. 中国图书馆学报, 2019, 45(6): 84-99. 10 温浩. 科技文摘创新点语义识别与分类方法研究[J]. 情报学报, 2019, 38(3): 249-256. 11 孙震, 冷伏海, 张晋辉. 基于知识元的科学计量方法及其实证研究[J]. 图书情报工作, 2017, 61(23): 89-99. 12 曲佳彬, 欧石燕. 关联数据可视化研究进展分析[J]. 图书与情报, 2018(4): 51-61. 13 余丽, 钱力, 付常雷, 等. 基于深度学习的文本中细粒度知识元抽取方法研究[J]. 数据分析与知识发现, 2019, 3(1): 38-45. 14 苏新宁, 王东波. 学术评价相关问题与思考[J]. 信息资源管理学报, 2018, 8(3): 4-11. 15 冯长根. 一种自然而然的科技成果评价方法值得国家推广[J]. 中国人大, 2017(7): 33-35. 16 章成志, 李铮. 基于学术论文全文的创新研究评价句抽取研究[J]. 数据分析与知识发现, 2019, 3(10): 12-19. 17 温有奎, 吴广印. 碎片化科研创新点动态挖掘研究[J]. 数字图书馆论坛, 2014(7): 25-32. 18 索传军, 盖双双, 周志超. 认知计算——单篇学术论文评价的新视角[J]. 中国图书馆学报, 2018, 44(1): 50-61. 19 刘益东. 设立战略家工作室, 创建世界一流思想库[J]. 科技创新导报, 2014, 11(14): 250-254. 20 刘益东. 开放式评价与学术市场: 彻底解放学者的创造力[J]. 北京师范大学学报(社会科学版), 2018(1): 17-26. 21 Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2019: 4171-4186. 22 卢珍红, 郑进烜, 桂敏, 等. 基于菊花为研究对象的近30年学术论文统计分析[J]. 江西农业学报, 2015, 27(6): 21-26. 23 叶继元. 学术“全评价”分析框架与创新质量评价的难点及其对策[J]. 河南大学学报(社会科学版), 2016, 56(5): 151-156. |
|
|
|