|
|
A Review on Named Entity Recognition |
Liu Liu1, 2, Wang Dongbo3, 2 |
1. School of Information Management, Nanjing University, Nanjing 210023; 2. Jiangsu Key Laboratory of Data Engineering and Knowledge Service (Nanjing University), Nanjing 210023; 3. College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095 |
|
|
Abstract Named Entity Recognition has been an important research topic in information extraction and natural language processing. With the development of machine learning and an increasing interest in digital humanities, entity recognition has gained importance. More importantly, the Named Entity Recognition research has indicated the potential of development in the field. This study shows the arising and the development of Named Entity Recognition from the most important conferences, the main algorithms to the most popular implementations. The future possibilities in the research field are proposed at the end.
|
Received: 08 November 2017
|
|
|
|
[1] Chinchor N.MUC-6 named entity task definition (version 2.1)[C]// Proceedings of the 6th Conference on Message Understanding, Columbia, Maryland, 1995. [2] Chinchor N, Robinson P.MUC-7 named entity task definition[C]// Proceedings of the 7th Conference on Message Understanding, 1997. [3] LDC. Entity detection and tracking-phase 1 ace pilot study task definition[EB/OL].[2017-03-10]. https://www.ldc.upenn.edu/ sites/www.ldc.upenn.edu/files/edt-phase1-v2.2.pdf. [4] LDC. Annotation guidelines for entity link tracking (LNK) Version 3.0 20040401[EB/OL]. [2017-03-10]. https://www.ldc.upenn. edu/sites/www.ldc.upenn.edu/files/english-lnk-v3.0.PDF. [5] Sang E F T K. Introduction to the CoNLL-2002 shared task: Language-independent named entity recognition[C]// Proceedings of the 6th Conference on Natural language Learning, 2002: 1-4. [6] Sang E F T K, De Meulder F. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition[C]// Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL, Association for Computational Linguistics, 2003: 142-147. [7] Levow G.The third international Chinese language processing bakeoff: Word segmentation and named entity recognition[C]// Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing, Sydney, Australia, 2006: 108-117. [8] Jin G, Chen X.The fourth international Chinese language processing bakeoff: Chinese word segmentation, named entity recognition and chinese pos tagging[C]// Proceedings of the Sixth SIGHAN Workshop on Chinese Language Processing, 2008: 69-81. [9] Petasis G, Cucchiarelli A, Velardi P, et al.Automatic adaptation of Proper Noun Dictionaries through cooperation of machine learning and probabilistic methods[C]// Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2000: 128-135. [10] Alfonseca E, Manandhar S.An unsupervised method for general named entity recognition and automated concept discovery[C]// Proceedings of the 1st International Conference on General WordNet, Mysore, India, 2002: 34-43. [11] Sekine S, Sudo K, Nobata C.Extended named entity hierarchy[C]// Proceedings of the Third International Conference on Language Resources and Evaluation, 2002: 1818-1824. [12] Sekine S, Nobata C.Definition, dictionaries and tagger for extended named entity hierarchy[C]// Proceedings of the International Conference on Language Resources and Evaluation, 2004: 1977-1980. [13] Borrega O, Taulé M, Martí M A.What do we mean when we speak about Named Entities[C]// Proceedings of Corpus Linguistics, 2007. [14] Nadeau D, Sekine S.A survey of named entity recognition and classification[J]. Lingvisticae Investigationes, 2007, 30(1): 3-26. [15] Kripke S A.Naming and necessity[M]// Semantics of Natural Language. Springer, 1972: 253-355. [16] Marrero M, Urbano J, Sánchez-Cuadrado S, et al.Named entity recognition: fallacies, challenges and opportunities[J]. Computer Standards & Interfaces, 2013, 35(5): 482-489. [17] Rau L F.Extracting company names from text[C]// Proceedings of the Seventh IEEE Conference on Artificial Intelligence Applications, IEEE, 1991: 29-32. [18] Krupka G R.SRA: Description of the SRA system as used for MUC-6[C]// Proceedings of the 6th Conference on Message Understanding. Stroudsburg: Association for Computational Linguistics, 1995: 221-235. [19] Sundheim B M.Overview of results of the MUC-6 evaluation[C]// Proceedings of a Workshop on Held at Vienna, Virginia. Stroudsburg: Association for Computational Linguistics, 1996: 423-442. [20] Merchant R, Okurowski M E, Chinchor N.The multilingual entity task (MET) overview[C]// Proceedings of a Workshop on Held at Vienna, Virginia. Stroudsburg: Association for Computational Linguistics, 1996: 445-447. [21] Chinchor N.Overview of muc-7/met-2[R]. Science Applications International Corp San Diego, CA, 1998. [22] Mikheev A, Grover C, Moens M.Description of the LTG system used for MUC-7[C]// Proceedings of 7th Message Understanding Conference, Fairfax, VA, 1998: 1-12. [23] Yu S, Bai S, Wu P.Description of the Kent Ridge Digital Labs system used for MUC-7[C]// Proceedings of the Seventh Message Understanding Conference, 1998: 1-16. [24] Weischedel R.BBN: description of the PLUM system as used for MUC-6[C]// Proceedings of the 6th Conference on Message Understanding. Stroudsburg: Association for Computational Linguistics, 1995: 55-69. [25] Aberdeen J, Burger J, Day D, et al.MITRE: description of the alembic system used for MUC-6[C]// Proceedings of the 6th Conference on Message Understanding. Stroudsburg: Association for Computational Linguistics, 1995: 141-155. [26] Appelt D E, Hobbs J R, Bear J, et al.SRI International FASTUS system: MUC-6 test results and analysis[C]// Proceedings of the 6th Conference on Message Understanding. Stroudsburg: Association for Computational Linguistics, 1995: 237-248. [27] Grishman R.The NYU system for MUC-6 or where’s the syntax?[C]// Proceedings of the 6th Conference on Message Understanding, Association for Computational Linguistics, 1995: 167-175. [28] Black W J, Rinaldi F, Mowatt D.FACILE: Description of the NE system used for MUC-7[C]// Proceedings of the 7th Message Understanding Conference, 1998. [29] Humphreys K, Gaizauskas R, Azzam S, et al.University of sheffield: Description of the LaSIE-II system as used for MUC-7[C]// Proceedings of the Seventh Message Understanding Conferences, 1998. [30] Chen H, Ding Y, Tsai S, et al.Description of the NTU system used for MET2[C]// Proceedings of 7th Message Understanding Conference, 1998. [31] Borthwick A, Sterling J, Agichtein E, et al.NYU: Description of the MENE named entity system as used in MUC-7[C]// Proceedings of the Seventh Message Understanding Conference, 1998. [32] Strassel S, Mitchell A, Huang S.Multilingual resources for entity extraction[C]// Proceedings of the ACL 2003 Workshop on Multilingual and Mixed-Language Named Entity Recognition, Stroudsburg: Association for Computational Linguistics, 2003: 49-56. [33] Doddington G R, Mitchell A, Przybocki M A, et al.The automatic content extraction program-tasks, data, and evaluation[C]// Proceedings of the International Conference on Language Resources and Evaluation, 2004: 1. [34] LDC. Entity detection and tracking - Phase 1 EDT and metonymy annotation guidelines[EB/OL].[2017-03-10]. https://www.ldc. upenn.edu/sites/www.ldc.upenn.edu/files/edt-guidelines-v2-5.pdf. [35] LDC. Annotation guidelines for relation detection and characterization (RDC) Version 3.6-4.22.2002[EB/OL]. [2017-03-10]. https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/rdc-guidelines-v3.6.pdf. [36] NIST. Automatic content extraction 2003 evaluation[EB/OL]. [2017-03-10]. http://itl.nist.gov/iad/mig/tests/ace/2003/. [37] NIST. The ACE 2004 evaluation plan evaluation of the recognition of ACE entities, ACE relations and ACE events[EB/OL]. [2017-03-10]. http://itl.nist.gov/iad/mig/tests/ace/2004/doc/ace04- evalplan-v7.pdf. [38] LDC. ACE (Automatic Content Extraction) English annotation guidelines for values[EB/OL].[2017-03-10]. https://www.ldc.upenn. edu/sites/www.ldc.upenn.edu/files/english-values-guidelines-v1.2. 4.pdf. [39] LDC. Timestamping of ACE relations and events for2005[EB/OL]. [2017-03-10]. https://www.ldc.upenn.edu/sites/www. ldc.upenn.edu/files/english-timestamping-guidelines-v3.pdf. [40] LDC. ACE (Automatic Content Extraction) English annotation guidelines for events[EB/OL].[2017-03-10]. https://www.ldc. upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf. [41] NIST. The ACE 2005 evaluation plan evaluation of the detection and recognition of ACE entities, values, temporal expressions, relations, and events[EB/OL]. [2017-03-10]. http://itl.nist. gov/iad/mig/tests/ace/2005/doc/ace05-evalplan.v3.pdf. [42] LDC. ACE (Automatic Content Extraction) Spanish annotation guidelines for entities[EB/OL].[2017-03-10]. https://www.ldc. upenn.edu/sites/www.ldc.upenn.edu/files/spanish-entities-guidelines-v1.6.pdf. [43] LDC. GALE Arabic translation guidelines V2.3[EB/OL]. [2017- 03-10]. http://projects.ldc.upenn.edu/gale/Translation/specs/GALE_ Arabic_translation_guidelines_v2.3.pdf. [44] LDC. GALE Chinese translation guidelines V2.3[EB/OL]. [2017-03-10]. http://projects.ldc.upenn.edu/gale/Translation/specs/ GALE_Chinese_translation_guidelines_v2.3.pdf. [45] NIST. The ACE 2007 evaluation plan evaluation of the detection and recognition of ACE entities, values, temporal expressions, relations, and events[EB/OL]. [2017-03-10]. http://itl.nist. gov/iad/mig/tests/ace/2007/doc/ace07-evalplan.v1.3a.pdf. [46] LDC. ACE2008: Cross-document annotation guidelines (XDOC)[EB/OL]. [2017-03-10]. https://www.ldc.upenn.edu/sites/ www.ldc.upenn.edu/files/ace08-xdoc-1.6.pdf. [47] NIST. Automatic content extraction 2008 evaluation plan assessment of detection and recognition of entities and relations within and across documents[EB/OL]. [2017-03-10]. http:// itl.nist. gov/iad/mig/tests/ace/2008/doc/ace08-evalplan.v1.2d.pdf. [48] Burger J D, Henderson J C, Morgan W T.Statistical named entity recognizer adaptation[C]// Proceedings of the 6th Conference on Natural Language Learning, Stroudsburg: Association for Computational Linguistics, 2002, 20: 1-4. [49] Chieu H L, Ng H T.Named entity recognition with a maximum entropy approach[C]// Conference on Natural Language Learning at HLT-NAACL, 2003: 160-163. [50] Curran J R, Clark S.Language independent NER using a maximum entropy tagger[C]// Conference on Natural Language Learning at HLT-NAACL, 2003: 164-167. [51] Mayfield J, McNamee P, Piatko C. Named entity recognition using hundreds of thousands of features[C]// Proceedings of the Seventh Conference on Natural Language Learning at HLT- NAACL, Stroudsburg: Association for Computational Linguistics, 2003: 184-187. [52] McCallum A, Li W. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons[C]// Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL, Stroudsburg: Association for Computational Linguistics, 2003,4: 188-191. [53] Carreras X, Marquez L, Padró L.Named entity extraction using adaboost[C]// Proceedings of the 6th Conference on Natural Language Learning, Stroudsburg: Association for Computational Linguistics, 2002, 20: 1-4. [54] Zhang T, Johnson D.A robust risk minimization based named entity recognition system[C]// Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL, Stroudsburg: Association for Computational Linguistics, 2003, 4: 204-207. [55] Carreras X, Màrquez L, Padró L.Learning a perceptron-based named entity chunker via online recognition feedback[C]// Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL, Stroudsburg: Association for Computational Linguistics, 2003, 4: 156-159. [56] Hammerton J.Named entity recognition with long short-term memory[C]// Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL, Stroudsburg: Association for Computational Linguistics, 2003, 4: 172-175. [57] Black W J, Vasilakopoulos A.Language independent named entity classification by modified transformation-based learning and by decision tree induction[C]// proceedings of the 6th Conference on Natural Language Learning, Stroudsburg: Association for Computational Linguistics, 2002, 20: 1-4. [58] Florian R.Named entity recognition as a house of cards: Classifier stacking[C]// Proceedings of the 6th Conference on Natural Language Learning, Stroudsburg: Association for Computational Linguistics, 2002, 20: 1-4. [59] Florian R, Ittycheriah A, Jing H, et al.Named entity recognition through classifier combination[C]// Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL, Stroudsburg: Association for Computational Linguistics, 2003, 4: 168-171. [60] Klein D, Smarr J, Nguyen H, et al.Named entity recognition with character-level models[C]// Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL, Stroudsburg: Association for Computational Linguistics, 2003, 4: 180-183. [61] 赵军. 命名实体识别、排歧和跨语言关联[J]. 中文信息学报, 2009, 23(2): 3-17. [62] Chang J, Chen S, Chen Y, et al.A multiple-corpus approach to identification of Chinese surname-names[C]// Proceedings of Natural Language Processing Pacific Rim Symposium, 1991: 87-91. [63] Wang L, Li W, Chang C.Recognizing unregistered names for mandarin word identification[C]// Proceedings of the 14th Conference on Computational Linguistics, Stroudsburg: Association for Computational Linguistics, 1992, 4: 1239-1243. [64] 张俊盛, 陈舜德, 郑萦, 等. 多语料库作法之中文姓名辨识[J]. 中文信息学报, 1992, 6(3): 9-17. [65] 张小衡, 王玲玲. 中文机构名称的识别与分析[J]. 中文信息学报, 1997, 11(4): 21-32. [66] 宋柔, 朱宏. 基于语料库和规则库的人名识别法[C]// 全国第二届计算机语言学联合学术会议. 北京: 北京语言学院出版社, 1993: 150-154. [67] 郑家恒, 刘开瑛. 自动分词系统中姓氏人名处理策略探讨[C]// 全国第二届计算机语言学联合学术会议. 北京: 北京语言学院出版社, 1993: 139-143. [68] 孙茂松, 黄昌宁, 高海燕, 等. 中文姓名的自动辨识[J]. 中文信息学报, 1995, 9(2): 16-27. [69] 孙镇, 王惠临. 命名实体识别研究进展综述[J]. 现代图书情报技术, 2010, 26(6): 42-47. [70] Zhou J S, He L, Dai X Y, et al.Chinese Named Entity Recognition with a Multi-Phase Model[C]// Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing. Stroudsburg: Association for Computational Linguistics, 2006: 213-216. [71] Chen A, Peng F, Shan R, et al.Chinese named entity recognition with conditional probabilistic models[C]// Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing. Stroudsburg: Association for Computational Linguistics, 2006: 173-176. [72] Chen W L, Zhang Y J, Isahara H.Chinese named entity recognition with conditional random fields[C]// Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing. Stroudsburg: Association for Computational Linguistics, 2006: 118-121. [73] Mao X N, Dong Y, He S K, et al.Chinese word segmentation and named entity recognition based on conditional random fields[C]// Proceedings of the Sixth SIGHAN Workshop on Chinese Language Processing, 2008: 90-93. [74] Zhao H, Kit C.Unsupervised segmentation helps supervised learning of character tagging for word segmentation and named entity recognition[C]// Proceedings of the Fourth International Chinese Language Processing Bakeoff & the First CIPS Chinese Language Processing Evaluation, 2008: 106-111. [75] Yu X F, Lam W, Chan S K, et al.Chinese NER using crfs and logic for the fourth SIGHAN bakeoff[C]// Proceedings of the Sixth SIGHAN Workshop on Chinese Language Processing, 2008: 102-105. [76] Zhang S X, Qin Y, Wen J, et al.Word segmentation and named entity recognition for SIGHAN Bakeoff3[C]// Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing. Stroudsburg: Association for Computational Linguistics, 2006: 158-161. [77] Chen Y, Jin P, Li W, et al.The Chinese persons name disambiguation evaluation: Exploration of personal name disambiguation in Chinese news[C]// Processings of the CIPS-SIGHAN Joint Conference on Chinese Language, 2010. [78] He Z, Wang H, Li S.The Task 2 of CIPS-SIGHAN 2012 named entity recognition and disambiguation in Chinese Bakeoff[C]// Proceedings of the Second CIPS-SIGHAN Joint Conference on Chinese Language Processing. 2012: 108-114. [79] Zong H, Wong D F, Chao L S.A template based hybrid model for Chinese personal name disambiguation[C]// Proceedings of the Second CIPS-SIGHAN Joint Conference on Chinese Language Processing, Tianjin, China, 2012: 121-126. [80] Tian W, Pan X, Yu Z T, et al.Chinese name disambiguation based on adaptive clustering with the attribute features[C]// Proceedings of the Second CIPS-SIGHAN Joint Conference on Chinese Language Processing, Tianjin, China, 2012: 132-137. [81] Collins M, Singer Y.Unsupervised models for named entity classification[C]// Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, 1999: 100-110. [82] Cucerzan S, Yarowsky D.Language independent named entity recognition combining morphological and contextual evidence[C]// Proceedings of the 1999 Joint SIGDAT Conference on EMNLP and VLC, 1999: 90-99. [83] Mikheev A, Moens M, Grover C.Named entity recognition without gazetteers[C]// Proceedings of the Ninth Conference on European Chapter of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 1999: 1-8. [84] 张晓艳, 王挺, 陈火旺. 命名实体识别研究[J]. 计算机科学, 2005, 32(4): 44-48. [85] Bikel D M, Miller S, Schwartz R, et al.Nymble: a high-performance learning name-finder[C]// Proceedings of the Fifth Conference on Applied Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 1997: 194-201. [86] Bikel D M, Schwartz R, Weischedel R M.An algorithm that learns what's in a name[J]. Machine Learning, 1999, 34(1-3): 211-231. [87] Borthwick A E.A maximum entropy approach to named entity recognition[D]. New York: New York University, 1999. [88] Isozaki H, Kazawa H.Efficient support vector classifiers for named entity recognition[C]// Proceedings of the 19th International Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2002, 1: 1-7. [89] Zhou G, Su J.Named entity recognition using an HMM-based chunk tagger[C]// Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2002: 473-480. [90] Leaman R, Lu Z.TaggerOne: joint named entity recognition and normalization with semi-Markov Models[J]. Bioinformatics, 2016, 32(18): 2839-2846. [91] 俞鸿魁, 张华平, 刘群, 等. 基于层叠隐马尔可夫模型的中文命名实体识别[J]. 通信学报, 2006, 27(2): 87-94. [92] 胡文博, 都云程, 吕学强, 等. 基于多层条件随机场的中文命名实体识别[J]. 计算机工程与应用, 2009, 45(1): 163-165. [93] 周俊生, 戴新宇, 尹存燕, 等. 基于层叠条件随机场模型的中文机构名自动识别[J]. 电子学报, 2006, 34(5): 804-809. [94] Li C, Liu Y.Improving named entity recognition in Tweets via detecting non-standard words[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 929-938. [95] 冯元勇, 孙乐, 李文波, 等. 基于单字提示特征的中文命名实体识别快速算法[J]. 中文信息学报, 2008, 22(1): 104-110. [96] 冯元勇, 孙乐, 张大鲲, 等. 基于小规模尾字特征的中文命名实体识别研究[J]. 电子学报, 2008, 36(9): 1833-1838. [97] Luo W, Yang F.An empirical study of automatic Chinese word segmentation for spoken language understanding and named entity recognition[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics, Human Language Technologies, San Diego, California, 2016: 238-248. [98] Krishnan V, Manning C D.An effective two-stage model for exploiting non-local dependencies in named entity recognition[C]// Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2006: 1121-1128. [99] 张玥杰, 徐智婷, 薛向阳. 融合多特征的最大熵汉语命名实体识别模型[J]. 计算机研究与发展, 2008, 45(6): 1004-1010. [100] Chieu H L, Ng H T.Named entity recognition: a maximum entropy approach using global information[C]// Proceedings of the 19th International Conference on Computational linguistics. Stroudsburg: Association for Computational Linguistics, 2002, 1: 1-7. [101] Miller S, Guinness J, Zamanian A.Name tagging with word clusters and discriminative training[C]// Proceedings of HLT- NAACL, 2004: 337-342. [102] Ratinov L, Roth D.Design challenges and misconceptions in named entity recognition[C]// Proceedings of the Thirteenth Conference on Computational Natural Language Learning. Association for Computational Linguistics, 2009: 147-155. [103] Kazama J I, Torisawa K.Exploiting Wikipedia as external knowledge for named entity recognition[C]// Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 2007: 698-707. [104] Richman A E, Schone P.Mining Wiki resources for multilingual named entity recognition[C]// Proceedings of ACL-08: HLT. Stroudsburg: Association for Computational Linguistics, 2008: 1-9. [105] Nothman J, Ringland N, Radford W, et al.Learning multilingual named entity recognition from Wikipedia[J]. Artificial Intelligence, 2013, 194: 151-175. [106] 郑逢强, 林磊, 刘秉权, 等. 《 知网》 在命名实体识别中的应用研究[J]. 中文信息学报, 2008, 22(5): 97-101. [107] Li L, Mao T, Huang D, et al.Hybrid models for Chinese named entity recognition[C]// Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing. Stroudsburg: Association for Computational Linguistics, 2006: 72-78. [108] 张晓艳, 王挺, 陈火旺. 基于混合统计模型的汉语命名实体识别方法[J]. 计算机工程与科学, 2006, 28(6): 135-139. [109] 向晓雯, 史晓东, 曾华琳. 一个统计与规则相结合的中文命名实体识别系统[J]. 计算机应用, 2005, 25(10): 2404-2406. [110] 潘正高. 基于规则和统计相结合的中文命名实体识别研究[J]. 情报科学, 2012, 30(5): 708-712. [111] Liu X H, Zhou M, Wei F R, et al.Joint inference of named entity recognition and normalization for Tweets[C]// Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2012: 526-535. [112] Kim S, Toutanova K, Yu H.Multilingual named entity recognition using parallel data and metadata from Wikipedia[C]// Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2012: 694-702. [113] Zirikly A, Hagiwara M.Cross-lingual transfer of named entity recognizers without parallel corpora[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 390-396. [114] Darwish K.Named entity recognition using cross-lingual resources: Arabic as an example[C]// Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2013: 1558-1567. [115] Ni J, Florian R.Improving multilingual named entity recognition with Wikipedia entity type mapping[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2016: 1275-1284. [116] Wang M, Che W, Manning C D.Joint word alignment and bilingual named entity recognition using dual decomposition[C]// Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2013: 1073-1082. [117] Li Y, Huang H, Zhao X, et al.Named Entity recognition based on bilingual co-training[M]// Chinese Lexical Semantics. Berlin: Springer, 2013: 480-489. [118] Cherry C, Guo H Y.The unreasonable effectiveness of word representations for Twitter named entity recognition[C]// The 2015 Annual Conference of the North American Chapter of the ACL. Stroudsburg: Association for Computational Linguistics, 2015: 735-745. [119] Peng N, Dredze M.Improving named entity recognition for Chinese social media with word segmentation representation learning[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 149-155. [120] Tomori S, Ninomiya T, Mori S.Domain specific named entity recognition referring to the real world by deep neural networks[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 236-242. [121] Lample G, Ballesteros M, Subramanian S, et al.Neural architectures for named entity recognition[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2016: 260-270. [122] Bharadwaj A, Mortensen D, Dyer C, et al.Phonologically aware neural model for named entity recognition in low resource transfer settings[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2016: 1462-1472. [123] Dong X S, Qian L J, Guan Y, et al.A multiclass classification method based on deep learning for named entity recognition in electronic medical records[C]// Proceedings of the 2016 New York Scientific Data Summit. IEEE, 2016: 1-10. [124] Shao Y, Hardmeier C, Nivre J.Multilingual named entity recognition using hybrid neural networks[C]// Proceedings of the Sixth Swedish Language Technology Conference, 2016. [125] Settles B.Biomedical named entity recognition using conditional random fields and rich feature sets[C]// Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications. Stroudsburg: Association for Computational Linguistics, 2004: 104-107. [126] Leaman R, Gonzalez G.BANNER: an executable survey of advances in biomedical named entity recognition[C]// Pacific Symposium on Biocomputing, 2008: 652-663. [127] Tang B Z, Cao H X, Wang X L, et al. Evaluating word representation features in biomedical named entity recognition tasks[J]. BioMed Research International, 2014, 2014: Article ID 240403. [128] Kazama J, Makino T, Ohta Y, et al.Tuning support vector machines for biomedical named entity recognition[C]// Proceedings of the ACL-02 Workshop on Natural Language Processing in the Biomedical Domain. Stroudsburg: Association for Computational Linguistics, 2002: 1-8. [129] Ritter A, Clark S, Etzioni O.Named entity recognition in tweets: an experimental study[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2011: 1524-1534. [130] Liu X, Zhang S, Wei F, et al.Recognizing named entities in Tweets[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2011: 359-367. [131] Li C, Weng J, He Q, et al.Twiner: named entity recognition in targeted twitter stream[C]// Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2012: 721-730. [132] 邱泉清, 苗夺谦, 张志飞. 中文微博命名实体识别[J]. 计算机科学, 2013, 40(6): 196-198. [133] Peng N, Dredze M.Named entity recognition for Chinese social media with jointly trained embeddings[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics 2015: 548-554. [134] Minkov E, Wang R C, Cohen W W.Extracting personal names from email: Applying named entity recognition to informal text[C]// Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2005: 443-450. [135] Leaman R, Wei C, Lu Z. tmChem: a high performance approach for chemical named entity recognition and normalization[J]. Journal of Cheminformatics, 2015, 7: S3. [136] 郭剑毅, 薛征山, 余正涛, 等. 基于层叠条件随机场的旅游领域命名实体识别[J]. 中文信息学报, 2009, 23(5): 47-52. [137] 刘非凡, 赵军, 吕碧波, 等. 面向商务信息抽取的产品命名实体识别研究[J]. 中文信息学报, 2006, 20(1): 7-13. [138] Putthividhya D, Hu J L.Bootstrapped named entity recognition for product attribute extraction[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2011: 1557-1567. [139] 汤亚芬. 先秦古汉语典籍中的人名自动识别研究[J]. 现代图书情报技术, 2013, 29(7-8): 63-68. [140] 朱锁玲, 包平. 方志类古籍地名识别及系统构建[J]. 中国图书馆学报, 2011, 37(3): 118-124. [141] 黄水清, 王东波, 何琳. 基于先秦语料库的古汉语地名自动识别模型构建研究[J]. 图书情报工作, 2015, 59(12): 135-140. [142] Liu Y D, Burkhart C, Hearne J, et al.Enhancing sumerian lemmatization by unsupervised named-entity recognition[C]// Proceedings of the 2015 Annual Conference of the North American Chapter of the ACL. Stroudsburg: Association for Computational Linguistics, 2015: 1446-1451. [143] Qu L, Ferraro G, Zhou L, et al.Named Entity Recognition for Novel Types by Transfer Learning[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2016: 899-905. |
|
|
|