|
|
The Credibility of Business Public Opinion Based on Model Checking |
Wu Peng1,2, Xiao Weicong1,2, Chu Rongzhen1,2 |
1.School of Economics and Management, Nanjing University of Science & Technology, Nanjing 210094 2.Jiangsu Collaborative Innovation Center of Social Safety Science and Technology, Nanjing 210094 |
|
|
Abstract Credibility assessment of business public opinion affects the both enterprise development and investors interests. To identify the criterion of credibility and judge its accuracy, this paper designed a credibility detection framework based on model checking technology. A decision tree algorithm was employed instead of the traditional artificial induction process to construct the rules for credibility judgment of business public opinion, and the language description was formalized with CTL. A business public opinion database is constructed as a credibility to-be-detected model based on the temporal logic relationship, represented by a Kripke structure. The model detector NuSMV performs automatic rule verification on the model to be detected, determines whether the model conforms to the credibility detection rule, and outputs the nonconforming paths as counter-examples (i.e., untrustworthy business public opinion detection paths). The proposed framework was validated in combination with empirical research, showing that the detection framework can quickly and effectively realize automatic detection of business public opinion credibility. This can help investors to analyze and predict the authenticity of business public opinion.
|
Received: 06 July 2019
|
|
|
|
1 刘丹丹. 财经失实新闻对资本市场的负面效果研究[D]. 广州: 暨南大学, 2015. 2 Zhang X C, Ghorbani A A. An overview of online fake news: Characterization, detection, and discussion[J]. Information Processing & Management, 2019, 57(2): 102025. 3 吴连伟, 饶元, 樊笑冰, 等. 网络传播信息内容的可信度研究进展[J]. 中文信息学报, 2018, 32(2): 1-11, 21. 4 Hilligoss B, Rieh S Y. Developing a unifying framework of credibility assessment: Construct, heuristics, and interaction in context[J]. Information Processing & Management, 2008, 44(4): 1467-1484. 5 Lucassen T, Schraagen J M. The influence of source cues and topic familiarity on credibility evaluation[J]. Computers in Human Behavior, 2013, 29(4): 1387-1392. 6 周全, 汤书昆. 社会化媒体信息源感知可信度及其影响因素研究——一项基于微博用户方便样本调查的实证分析[J]. 新闻与传播研究, 2015, 22(4): 18-35, 126. 7 李金城. 社交媒体信息可信度的评估策略与影响因素[J]. 情报杂志, 2017, 36(1): 181-186. 8 Gao Q, Tian Y, Tu M Y. Exploring factors influencing Chinese user s perceived credibility of health and safety information on Weibo[J]. Computers in Human Behavior, 2015, 45: 21-31. 9 Al-Khalifa H S, Al-Eidan R M. An experimental system for measuring the credibility of news content in Twitter[J]. International Journal of Web Information Systems, 2011, 7(2): 130-151. 10 Wu G G R, Hou T C T, Lin J L. Can economic news predict Taiwan stock market returns?[J]. Asia Pacific Management Review, 2019, 24(1): 54-59. 11 Atkins A, Niranjan M, Gerding E. Financial news predicts stock market volatility better than close price[J]. The Journal of Finance and Data Science, 2018, 4(2): 120-137. 12 Seng J L, Yang H F. The association between stock price volatility and financial news—A sentiment analysis approach[J]. Kybernetes, 2017, 46(8): 1341-1365. 13 Castillo C, Mendoza M, Poblete B. Information credibility on twitter[C]// Proceedings of the 20th International Conference on World Wide Web. New York: ACM Press, 2011: 675-684. 14 Gupta A, Kumaraguru P. Credibility ranking of tweets during high impact events[C]// Proceedings of the 1st Workshop on Privacy and Security in Online Social Media. New York: ACM Press, 2012: 2-8. 15 侯刚, 周宽久, 勇嘉伟, 等. 模型检测中状态爆炸问题研究综述[J]. 计算机科学, 2013, 40(S1): 77-86, 111. 16 Clarke E M, Emerson E A, Sistla A P. Automatic verification of finite-state concurrent systems using temporal logic specifications[J]. ACM Transactions on Programming Languages and Systems, 1986, 8(2): 244-263. 17 Fogg B J. Prominence-interpretation theory: Explaining how people assess credibility online[C] // Proceedings of the Extended Abstracts on Human Factors in Computing Systems. New York: ACM Press, 2003: 722-723. 18 赵文军, 陈荣元. 社会化媒体中的在线信息可信度评估模型研究[J]. 情报理论与实践, 2015, 38(12): 68-72. 19 Hong T. The influence of structural and message features on Web site credibility[J]. Journal of the American Society for Information Science and Technology, 2006, 57(1): 114-127. 20 徐琴峰. 基于财务特征的上市公司负面网络舆情预警研究[D]. 广州: 华南理工大学, 2015. 21 Liu P P, Xia X P, Li A T. Tweeting the financial market: Media effect in the era of Big Data[J]. Pacific-Basin Finance Journal, 2018, 51: 267-290. 22 吴璇, 田高良, 司毅, 等. 网络舆情管理与股票流动性[J]. 管理科学, 2017, 30(6): 51-64. 23 Pan N N, Zhu H Q. Block trading, information asymmetry, and the informativeness of trading[J]. China Finance Review International, 2015, 5(3): 215-235. 24 朱恒, 姚京, 朱书尚. 传闻、澄清公告影响机制研究——基于投资者情绪和投资者关注的视角[J]. 金融学季刊, 2019, 13(1): 176-205. 25 金雪军, 祝宇, 杨晓兰. 网络媒体对股票市场的影响——以东方财富网股吧为例的实证研究[J]. 新闻与传播研究, 2013, 20(12): 36-51, 120. 26 Sprenger T O, Tumasjan A, Sandner P G, et al. Tweets and trades: The information content of stock microblogs[J]. European Financial Management, 2014, 20(5): 926-957. 27 孟雪井, 孟祥兰, 胡杨洋. 基于文本挖掘和百度指数的投资者情绪指数研究[J]. 宏观经济研究, 2016(1): 144-153. 28 Conroy N K, Rubin V L, Chen Y M. Automatic deception detection: Methods for finding fake news[J]. Proceedings of the Association for Information Science and Technology, 2015, 52(1): 1-4. 29 Hamidian S, Diab M T. Rumor identification and belief investigation on Twitter[C]// Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Stroudsburg: Association for Computational Linguistics, 2016: 3-8. 30 Dovier A, Quintarelli E. Applying model-checking to solve queries on semistructured data[J]. Computer Languages, Systems & Structures, 2009, 35(2): 143-172. 31 Wille R. Concept lattices and conceptual knowledge systems[J]. Computers & Mathematics with Applications, 1992, 23(6-9): 493-515. 32 Dams D, Gerth R, Grumberg O. Abstract interpretation of reactive systems[J]. ACM Transactions on Programming Languages and Systems, 1997, 19(2): 253-291. 33 Clarke E M, Grumberg O, Peled D A. Model checking[M]. Cambridge:The MIT Press, 1999. 34 Luo X Y, Wu L J, Chen Q L, et al. Symbolic model checking for discrete real-time systems[J]. Science China Information Sciences, 2018, 61(5): 052106. 35 Mezzanzanica M, Boselli R, Cesarini M, et al. A model-based evaluation of data quality activities in KDD[J]. Information Processing & Management, 2015, 51(2): 144-166. 36 吴鹏, 张叙, 路霞. 基于模型检测方法的中文专利法律状态数据清洗研究[J]. 情报理论与实践, 2018, 41(3): 49-56. 37 Samarah S, Al Zamil M, Saifan A. Model checking based classification technique for wireless sensor networks[J]. New Review of Information Networking, 2012, 17(2): 93-107. 38 Suthaharan S. Decision tree learning[M]// Machine Learning Models and Algorithms for Big Data Classification. Boston: Springer US, 2016: 237-269. 39 Soeanu A, Debbabi M, Alhadidi D, et al. Transportation risk analysis using probabilistic model checking[J]. Expert Systems with Applications, 2015, 42(9): 4410-4421. 40 Zhou L G, Si Y W, Fujita H. Predicting the listing statuses of Chinese-listed companies using decision trees combined with an improved filter feature selection method[J]. Knowledge-Based Systems, 2017, 128: 93-101. 41 Hajek P, Henriques R. Mining corporate annual reports for intelligent detection of financial statement fraud—A comparative study of machine learning methods[J]. Knowledge-Based Systems, 2017, 128: 139-152. 42 Rutkowski L, Jaworski M, Pietruczuk L, et al. The CART decision tree for mining data streams[J]. Information Sciences, 2014, 266: 1-15. 43 王雄元, 刘立红, 王珊. 澄清公告可信度的市场反应[J]. 上海立信会计学院学报, 2010, 24(4): 15-22. 44 Li D, Qian J. Text sentiment analysis based on long short-term memory[C]// Proceedings of the First IEEE International Conference on Computer Communication and the Internet. IEEE, 2016. 45 刘海飞, 许金涛. 互联网异质性财经新闻对股市的影响——来自中国互联网数据与上市公司的证据[J]. 产业经济研究, 2017(1): 76-88. 46 宋云玲, 宋衍蘅. 上市公司业绩预告行为的“持续性”[J]. 投资研究, 2015(6): 23-33. 47 卞晗. 我国股票市场投资者非理性行为研究[D]. 哈尔滨: 黑龙江大学, 2018. 48 Jovanovi? M M, Ka??elan L, Joksimovi? M, et al. Decision tree analysis of wine consumers preferences: Evidence from an emerging market[J]. British Food Journal, 2017, 119(6): 1349-1361. |
|
|
|