|
|
Construction of Information System Oriented to Identifying the Frontier of Science and Technology in Key Areas |
Liu Qiyan, Zeng Wen, Che Yao |
Institute of Scientific and Technical Information of China, Beijing 100038 |
|
|
Abstract Recently, the development trend of science and technology in China has entered the stage of “following, merging, and leading.” To adapt to the new situation of science and technology, we need to develop frontier knowledge of science and technology in key areas, follow up the new developments of science and technology in major foreign countries in an all-round way, and perceive and judge the future development trend of science and technology. Additionally, we need to play a better role in ensuring the development of information systems. Based on the analysis of the current research situation all around the world, this study proposes and expounds the framework and methods for building an information system to identify the frontier of science and technology in key areas, and introduces the information practice in relevant research fields. The results show that the intelligence system and method of using multi-dimensional data to realize intelligence perception for identifying the science and technology frontier in key fields are operable.
|
Received: 03 July 2019
|
|
|
|
1 刘小平, 冷伏海, 李泽霞. 国际科技前沿分析的方法和途径[J]. 图书情报工作, 2012, 56(12): 60-65. 2 QiuJ P, DongK, YuH Q. Comparative study on structure and correlation among author co-occurrence networks in bibliometrics[J]. Scientometrics, 2014, 101(2): 1345-1360. 3 MustafeeN, KatsaliakiK, FishwickP. Exploring the modelling and simulation knowledge base through journal co-citation analysis[J]. Scientometrics, 2014, 98(3): 2145-2159. 4 王菲菲, 王筱涵, 刘扬. 三维引文关联融合视角下的学者学术影响力评价研究——以基因编辑领域为例[J]. 情报学报, 2018, 37(6): 610-620. 5 柯平, 何颖芳, 闫娜. 2011—2012年国外图书馆学研究前沿与热点分析[J]. 情报科学, 2013, 31(6): 3-9. 6 HayatM K, DaudA. Anomaly detection in heterogeneous bibliographic information networks using co-evolution pattern mining[J]. Scientometrics, 2017, 113(1): 149-175. 7 ShibataN, KajikawaY, TakedaY, et al. Detecting emerging research fronts based on topological measures in citation networks of scientific publications[J]. Technology Innovation, 2008, 28(11): 758-775. 8 AyseK F, WeiL W, StuartM. Technological forecasting—a review[EB/OL]. [2018-10-29]. http://web.mit.edu/smadnick/OldFiles/ www/wp/2008-15.pdf. 9 BlagininV, SmirnovaA, ErgunovaO, et al. Russia on world research front of industrial scientific direction[C]// Proceedings of the International Conference on Actual Issues of Mechanical Engineering. Paris: Atlantis Press, 2017: 113-119. 10 LuL Y, LiuJ S. A novel approach to identify research fronts of tourism literature[C]// Proceedings of Portland International Conference on Management of Engineering and Technology. New York: IEEE, 2015: 2211-2217. 11 章小童, 阮建海. 引文网络主路径分析法演化脉络及研究现状的文献计量分析[J]. 情报资料工作, 2016(5): 61-66. 12 ShibataN, KajikawaY, TakedaY, et al. Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications[C]// Proceedings of Portland International Conference on Management of Engineering & Technology. New York: IEEE, 2009. 13 KleinbergJ. Bursty and hierarchical structure in streams[J]. Data Mining and Knowledge Discovery, 2002, 7(4): 373-397. 14 洪娜, 张智雄, 乐小虬. 基于决策树的潜在爆发词探测方法[J]. 情报学报, 2012, 31(3): 228-241. 15 安新颖, 钟华. 科技监测的理论综述与应用系统对比分析[J]. 情报理论与实践, 2010, 33(5): 124-128. 16 BleiD M, NgA Y, JordanM I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. 17 BleiD M, LaffertyJ D. Dynamic topic models[C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 113-120. 18 王莉亚. 基于离群数据的主题演化研究[D]. 北京: 中国科学院大学, 2012: 10-25. 19 关鹏, 王曰芬, 傅柱. 不同语料下基于LDA主题模型的科学文献主题抽取效果分析[J]. 图书情报工作, 2016, 60(2): 112-121. 20 马腾, 曹吉鸣, 申良法. 知识转移研究演进脉络梳理及前沿热点探析——基于引文分析和共词分析[J]. 软科学, 2016, 30(2): 121-125. 21 van den BesselaarP, HeimeriksG. Mapping research topics using word-reference co-occurrences: A method and an exploratory case study[J]. Scientometrics, 2006, 68(3): 377-393. 22 张艺蔓, 马秀峰, 程结晶. 融合引文内容和全文本引文分析的知识流动研究[J]. 情报杂志, 2015, 34(11): 50-54, 49. 23 KongD J, LiM, ZhengW J. To identify technology frontier for mass-customized production service converged with artificial intelligence based on patent data mining[C]// Proceedings of the 15th International Conference on Service Systems and Service Management. New York: IEEE, 2018: 1-6. 24 张婷, 安嘉璐, 曹敏军, 等. 基于专利分析的医学科技重点技术前沿领域的识别研究[J]. 现代生物医学进展, 2015, 15(32): 6371-6376. 25 张振刚, 黄洁明, 陈一华. 基于专利计量的人工智能技术前沿识别及趋势分析[J]. 科技管理研究, 2018, 38(5): 36-42. 26 FujimagariH, FujitaK. Detecting research fronts using neural network model for weighted citation network analysis[J]. Journal of Information Processing, 2015, 23(6): 753-758. 27 ParkI, LeeK, YoonB. Exploring promising research frontiers based on knowledge maps in the solar cell technology field[J]. Sustainability, 2015, 7(10): 13660-13689. 28 SunW, WuL, HaoX N. Agricultural research front detection and national cooperative performance analysis based on ESI[C]// Proceedings of the 3rd International Conference on Systems and Informatics. New York: IEEE, 2016: 1095-1100. 29 赵雅馨, 杨志萍. 研究热点探测的替代计量学方法和应用——以信息与计算科学为例[J]. 情报杂志, 2016, 35(11): 39-44. 30 TianG D. On evolution and development frontier of 3D printing technology based on document analysis[C]// Proceedings of the 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology. Paris: Atlantis Press, 2017: 309-312. 31 白如江, 冷伏海, 廖君华. 一种基于多数据源主题对比的科学研究前沿识别方法[J]. 情报理论与实践, 2017, 40(8): 43-48, 36. 32 周群, 周秋菊, 冷伏海. 基于科技媒体视角的研究前沿识别方法研究与实证[J]. 现代情报, 2018, 38(2): 62-67, 74. 33 王延飞, 赵柯然, 陈美华, 等. 情报感知的研究解析[J]. 情报理论与实践, 2018, 41(8): 1-4. |
|
|
|