|
|
Construction of a Temporal Co-word Network and Its Dynamic Visualization |
Liu Ziqiang1,2, Yue Lixin3, Xu Haiyun1, Fang Shu1 |
1.Chengdu Library of Chinese Academy of Sciences, Chengdu 610041 2.Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100049 3.School of Information Resource Management, Renmin University of China, Beijing 100872 |
|
|
Abstract Co-word analysis is a basic analysis method in the field of information. Exploring the construction of a temporal Co-word network and its dynamic visualization has certain significance for improving and enriching classical Co-word analysis methods. In this paper, a method of constructing a temporal Co-word network and its dynamic visualization is proposed. First, the time label of keywords is extracted and then the adjacent form data of the temporal Co-word network are constructed by using the time label of keywords and their co-occurrence relationships. Then, a time-stratified Co-word network map is constructed, on the basis of the visualization method, and the dynamic visualization of the temporal Co-word network is based on interactive visualization technology, thus effectively revealing the dynamic evolution process of the Co-word network. The feasibility and validity of the method proposed in this paper have been verified through empirical study of data mining in the field of Library and Information Science in China.
|
Received: 26 March 2019
|
|
|
|
1 李纲, 巴志超. 共词分析过程中的若干问题研究[J]. 中国图书馆学报, 2017, 43(4): 93-113. 2 冯璐, 冷伏海. 共词分析方法理论进展[J]. 中国图书馆学报, 2006, 32(2): 88-92. 3 傅柱, 王曰芬. 共词分析中术语收集阶段的若干问题研究[J]. 情报学报, 2016, 35(7): 704-713. 4 王晓光. 科学知识网络的形成与演化(I): 共词网络方法的提出[J]. 情报学报, 2009, 28(4): 599-605. 5 游毅, 索传军. 国内信息生命周期研究主题与趋势分析——基于关键词共词分析与知识图谱[J]. 情报理论与实践, 2011, 34(10): 17-21. 6 高继平, 丁堃, 潘云涛, 等. 多词共现分析方法的实现及其在研究热点识别中的应用[J]. 图书情报工作, 2014, 58(24): 80-85, 98. 7 张斌. 共词网络的结构与演化: 概念与理论进展[J]. 情报杂志, 2014, 33(7): 103-109. 8 ChenG, XiaoL. Selecting publication keywords for domain analysis in bibliometrics: A comparison of three methods[J]. Journal of Informetrics, 2016, 10(1): 212-223. 9 SerranoM A, BogunaM, VespignaniA. Extracting the multiscale backbone of complex weighted networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(16): 6483-6488. 10 魏瑞斌. 社会网络分析在关键词网络分析中的实证研究[J]. 情报杂志, 2009, 28(9): 46-49. 11 王贤文, 徐申萌, 彭恋, 等. 基于专利共类分析的技术网络结构研究: 1971—2010[J]. 情报学报, 2013,32(8): 89-92. 12 Olmeda-GómezC, Ovalle-PerandonesM A, Perianes-RodríguezA. Co-word analysis and thematic landscapes in Spanish information science literature, 1985-2014[J]. Scientometrics, 2017, 113(1): 195-217. 13 李承晋, 高冲, 周文杰. 共词分析识别研究热点的内容效度研究:基于自然语言处理[J]. 图书与情报, 2018(1): 8-14, 27. 14 杨丽, 张彤彤, 周文杰. 共词分析识别研究热点的效标关联效度研究:基于自然语言处理[J]. 图书与情报, 2018(1): 15-19. 15 张敏, 朱明星, 刘晓彤. 基于关键词网络挖掘和时序分析的云计算研究扩散与演化[J]. 图书馆工作与研究, 2016(12): 61-68. 16 施萧萧, 张庆普. 基于共词分析的国外颠覆性创新研究现状及发展趋势[J]. 情报学报, 2017, 36(7): 748-759. 17 RosvallM, BergstromC T. Mapping change in large networks[J]. PLoS ONE, 2010, 5(1): e8694. 18 王晓光, 程齐凯. 基于NEViewer的学科主题演化可视化分析[J]. 情报学报, 2013, 32(9): 900-911. 19 ChenC M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. 20 CoboM J, López-HerreraA G, Herrera-ViedmaE, et al. SciMAT: A new science mapping analysis software tool[J]. Journal of the American Society for Information Science and Technology, 2012, 63(8): 1609-1630. 21 Batagelj V, Mrvar A. Pajek—Analysis and visualization of large networks[C]// Proceedings of the International Symposium on Graph Drawing. Heidelberg: Springer, 2002, 2265: 477-478. 22 van EckN J, WaltmanL. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538. 23 BostockM, OgievetskyV, HeerJ. D3: Data-driven documents[J]. IEEE Transactions on Visualization and Computer Graphics, 2011,17(12): 2301-2309. 24 CallonM, CourtialJ P, TurnerW A, et al. From translations to problematic networks: An introduction to co-word analysis[J]. Social Science Information, 1983, 22(2): 191-235. 25 HeQ. Knowledge discovery through co-word analysis[J]. Library Trends, 1999, 48(1): 133-159. 26 张凌, 周春雷, 寇广增. 基于共词分析的国内知识服务研究[J]. 图书情报工作, 2009, 53(24): 64-68. 27 吕鹏辉, 李晶晶, 杨善林. 科学创新视角下的学科共词网络演化研究[J]. 情报学报, 2016, 35(11): 1165-1172. 28 滕立, 沈君, 高继平. 共词知识网络中的认知结构: 理论、方法与实证[J]. 情报学报, 2013, 32(9): 976-989. 29 赵一鸣, 吕鹏辉. 学科知识网络研究(Ⅲ)共词网络的结构、特征与演化[J]. 情报学报, 2014, 33(4): 358-366. 30 唐果媛, 张薇. 国内外共词分析法研究的发展与分析[J]. 图书情报工作, 2014, 58(22): 138-145. 31 托马斯·库恩. 科学革命的结构[M]. 第四版. 金吾伦, 胡新和, 译. 北京: 北京大学出版社, 2012. 32 陈亮. 西方科学哲学中各种科学发展模式的比较分析和启示[J]. 经济与社会发展研究, 2014(8): 38. 33 PaivioA. Dual coding theory: Retrospect and current status[J]. Canadian Journal of Psychology, 1991, 45(3): 255-287. 34 赵国庆, 黄荣怀, 陆志坚. 知识可视化的理论与方法[J]. 开放教育研究, 2005, 11(1): 23-27. |
|
|
|