|
|
Heterogeneous Information Network Embedding for Patent Technology Supply-Demand Trade Recommendations among Subjects |
He Xijun, Dong Yanbo, Wu Yuying, Jiang Guorui, Ma Shan, Zheng Yao |
School of Economics and Management, Beijing University of Technology, Beijing 100124 |
|
|
Abstract We constructed a heterogeneous information network (HIN) consisting of four types of nodes and ten types of relationships after considering the impact of seven parameters (technological proximity, geographical proximity, co-application relationship, citation relation, economic circle effect, subject type proximity, and subordinate relation among subjects) on trade. We then proposed heterogeneous relationship traversal algorithms based on the meta path and meta structure and obtained subject-relationship sequences based on multi-relational mapping. Based on the relation sequence corpus, we constructed a model of patent technology subject trade recommendations using network embedding (PSR-vec). We then trained the model using the Skip-Gram method of the Huffman tree to obtain a subject vector space representation. Finally, we calculated the similarity between subjectsvectors to formulate a trade recommendation. Through empirical research on patent data in the electronic information field from 2012 to 2018, we found that, first, with an accuracy rate of 82.4%, the PSR-vec model had greater accuracy compared to the DeepWalk, node2vec, and PathSim methods. Second, the recommendation accuracy of the combination of multiple meta paths and meta structures was higher than that of the single meta path or meta structure recommendation. Third, the accuracy of the recommendation results based on ρ2 and the meta structures S4, S6, S8, S10, S12, and S14 is higher than the accuracy of those based on ρ1 and improved meta-structures S3、S5、S7、S9、S11, and S13. This shows that the recommendation accuracy based on technological proximity among subjects is higher. Fourth, the recommendation accuracy is significantly improved for the meta structures with co-application, citation, subordinate relation, and economic circle effect on the basis of technological proximity, while the recommendation accuracy is lower when combining geographical proximity and subject type proximity. This indicates that geographical proximity and subject type proximity do not promote patent technology trade. Fifth, the recommendation subjects included the controlling relationship, the upstream and downstream relationship of the supply chain, and loosely related subjects, which reflected the validity and novelty of the recommendation results. This research provides a decision-making method for effective docking between subjects.
|
Received: 27 February 2019
|
|
|
|
1 Liu Y, Li K W. A two-sided matching decision method for supply and demand of technological knowledge[J]. Journal of Knowledge Management, 2017, 21(3): 592-606. 2 武玉英, 张博闻, 何喜军, 等. 新能源领域专利转让网络中技术供需主体间交易机会预测[J]. 情报杂志, 2018, 37(5): 79-84, 96. 3 何喜军, 董艳波, 武玉英, 等. 基于ERGM的科技主体间专利技术交易机会实证研究[J]. 中国软科学, 2018(3): 184-192. 4 Luo Y N, Zhao X B, Zhou J T, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information[J]. Nature Communications, 2017, 8: Article No. 573. 5 马荣康, 刘凤朝. 基于专利许可的新能源技术转移网络演变特征研究[J]. 科学学与科学技术管理, 2017, 38(6): 65-76. 6 He X J, Dong Y B, Wu Y Y, et al. Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 514: 443-457. 7 马永红, 张帆. 转移企业结网策略、网络结构与知识水平——基于环境不确定性视角[J]. 中国管理科学, 2017, 25(2): 187-196. 8 Sun Y T, Grimes S. The actors and relations in evolving networks: The determinants of inter-regional technology transaction in China[J]. Technological Forecasting and Social Change, 2017, 125: 125-136. 9 张艺, 陈凯华, 朱桂龙. 产学研合作与后发国家创新主体能力演变——以中国高铁产业为例[J]. 科学学研究, 2018, 36(10): 1896-1913. 10 党兴华, 弓志刚. 多维邻近性对跨区域技术创新合作的影响——基于中国共同专利数据的实证分析[J]. 科学学研究, 2013, 31(10): 1590-1600. 11 Park T Y, Lim H, Ji I. Identifying potential users of technology for technology transfer using patent citation analysis: A case analysis of a Korean research institute[J]. Scientometrics, 2018, 116(3): 1541-1558. 12 李浩君, 张广, 王万良, 等. 基于多维特征差异的个性化学习资源推荐方法[J]. 系统工程理论与实践, 2017, 37(11): 2995-3005. 13 Sun Y Z, Han J W, Zhao P X, et al. RankClus: Integrating clustering with ranking for heterogeneous information network analysis[C]// Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2009: 565-576. 14 Meng Y, Jiang C X, Xu L, et al. User association in heterogeneous networks: A social interaction approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9982-9993. 15 Zhu J X, Zhang J W, Zhang C W, et al. CHRS: Cold start recommendation across multiple heterogeneous information networks[J]. IEEE Access, 2017, 5: 15283-15299. 16 何喜军, 张婷婷, 武玉英, 等. 供需匹配视角下基于语义相似聚类的技术需求识别模型[J]. 系统工程理论与实践, 2019, 39(2): 476-485. 17 翟东升, 柴庆凤, 张杰, 等. 产业价值链视角下潜在专利交易机会挖掘方法研究[J]. 科技进步与对策, 2018, 35(7): 58-67. 18 Arts S, Cassiman B, Gomez J C. Text matching to measure patent similarity[J]. Strategic Management Journal, 2018, 39(1): 62-84. 19 Lee C S, Wang M H, Hsiao Y C, et al. Ontology-based GFML agent for patent technology requirement evaluation and recommendation[J]. Soft Computing, 2019, 23(2): 537-556. 20 Ji X, Gu X J, Dai F, et al. Patent collaborative filtering recommendation approach based on patent similarity[C]// Proceedings of the Eighth International Conference on Fuzzy Systems and Knowledge Discovery. New York: IEEE, 2011: 1699-1703. 21 Trappey A J C, Trappey C V, Wu C Y, et al. Intelligent patent recommendation system for innovative design collaboration[J]. Journal of Network and Computer Applications, 2013, 36(6): 1441-1450. 22 Zhang Y, Shang L N, Huang L, et al. A hybrid similarity measure method for patent portfolio analysis[J]. Journal of Informetrics, 2016, 10(4): 1108-1130. 23 Wang Y D, Pan X, Ning L T, et al. Technology exchange patterns in China: An analysis of regional data[J]. The Journal of Technology Transfer, 2015, 40(2): 252-272. 24 Wang Q, Du W, Ma J, et al. Recommendation mechanism for patent trading empowered by heterogeneous information networks[J]. International Journal of Electronic Commerce, 2019, 23(2): 147-178. 25 Guo G B, Zhu F D, Qu S L, et al. PCCF: Periodic and continual temporal co-factorization for recommender systems[J]. Information Sciences. 2018, 436-437: 56-73. 26 祝婷, 秦春秀, 李祖海. 基于用户分类的协同过滤个性化推荐方法研究[J]. 现代图书情报技术, 2015(6): 13-19. 27 夏立新, 杨金庆, 程秀峰. 移动环境下融合情境信息的群组推荐模型研究——基于用户APP行为数据的实证分析[J]. 情报学报, 2018, 37(4): 384-393. 28 邓晓懿, 金淳, 韩庆平, 等. 基于情境聚类和用户评级的协同过滤推荐模型[J]. 系统工程理论与实践, 2013, 33(11): 2945-2953. 29 翟丽丽, 邢海龙, 张树臣. 基于情境聚类优化的移动电子商务协同过滤推荐研究[J]. 情报理论与实践, 2016, 39(8): 106-110. 30 毕强, 刘健. 基于领域本体的数字文献资源聚合及服务推荐方法研究[J]. 情报学报, 2017, 36(5): 452-460. 31 熊回香, 杨雪萍. 社会化标注系统中的个性化信息推荐研究[J]. 情报学报, 2016, 35(5): 549-560. 32 Jiang L, Yang C C, User recommendation in healthcare social media by assessing user similarity in heterogeneous network[J]. Artificial Intelligence in Medicine, 2017, 81: 63-77. 33 曹玖新, 董羿, 杨鹏伟, 等. LBSN中基于元路径的兴趣点推荐[J]. 计算机学报, 2016, 39(4): 675-684. 34 Shi C, Liu J, Zhuang F Z, et al. Integrating heterogeneous information via flexible regularization framework for recommendation[J]. Knowledge and Information Systems, 2016, 49(3): 835-859. 35 Sun Y Z, Han J W, Yan X F, et al. PathSim: Meta path-based top-k similarity search in heterogeneous information networks[J]. Proceedings of the VLDB Endowment, 2011, 4(11): 992-1003. 36 Hu L, Wang Y, Xie Z Z, et al. Semantic preference-based personalized recommendation on heterogeneous information network[J]. IEEE Access, 2017, 5: 19773-19781. 37 Shi C, Zhang Z Q, Luo P, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM Press, 2015: 453-462. 38 Nandanwar S, Moroney A, Murty M N. Fusing diversity in recommendations in heterogeneous information networks[C]// Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2018: 414-422. 39 Gupta M, Kuma rP, Bhasker B, et al. Personalized item ranking from implicit user feedback: A heterogeneous information network approach[J]. Pacific Asia Journal of the Association for Information Systems, 2017, 9(2): 23-42. 40 Huang Z P, Zheng Y D, Cheng R, et al. Meta structure: Computing relevance in large heterogeneous information networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 1595-1604. 41 Huang Z P, Mamoulis N. Heterogeneous information network embedding for meta path based proximity[OL]. https://arxiv.org/pdf/1701.05291.pdf. 42 Zhao H, Yao Q M, Li J D, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2017: 635-644. 43 Li C Z, Wang S Z, Yang D J, et al. PPNE: Property preserving network embedding[C]// Proceedings of the 22nd International Conference on Database Systems for Advanced Applications. Cham: Springer, 2017: 163-179. 44 Chang S Y, Han W, Tang J L, et al. Heterogeneous network embedding via deep architectures[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2015: 119-128. 45 张晓娟. 利用嵌入方法实现个性化查询重构[J]. 情报学报, 2018, 37(6): 621-630. 46 Wang D X, Cui P, Zhu W W. Structural deep network embedding [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 1225-1234. 47 Yuan W W, He K Y, Han G J, et.al. User behavior prediction via heterogeneous information preserving network embedding[J]. Future Generation Computer Systems, 2019, 92: 52-58. 48 Hosseini A, Chen T, Wu W J, et al. HeteroMed: Heterogeneous information network for medical diagnosis[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2018: 763-772. 49 Chen T, Sun Y Z. Task-guided and path-augmented heterogeneous network embedding for author identification[C]// Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2017: 295-304. 50 Cai H Y, Zheng V W, Chang K C C. A comprehensive survey of graph embedding: Problems, techniques, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637. 51 Huang E W, Wang S, Li B X, et al. HEMnet: Integration of electronic medical records with molecular interaction networks and domain knowledge for survival analysis[C]// Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. New York: ACM Press, 2017: 378-387. 52 Bottazzi L, Peri G. Innovation and spillovers in regions: Evidence from European patent data[J]. European Economic Review, 2003, 47(4): 687-710. |
|
|
|