|
|
The Measurement of Scientific Knowledge Structure Based on Journal Clustering and Deep Learning |
Lu Wanhui1,2,3, Tan Zongying1,2 |
1.National Science Library, Chinese Academy of Sciences, Beijing 100190 2.University of Chinese Academy of Sciences, Beijing 100049 3.Chinese Academy of Social Science Evaluation Studies, Chinese Academy of Social Sciences, Beijing 100732 |
|
|
Abstract Accurately studying and measuring the logical relationship and structural system of scientific knowledge is an important basis for scientific research management activities. As an important platform for the dissemination and exchange of scientific knowledge, academic journals are effective carriers for exploring the structure of scientific knowledge. By using a deep learning algorithm, this paper considers the distance factor in the process of co-citation, studies similarity in journal clustering, and constructs a method for scientific knowledge structure measurement. The experimental results show that the knowledge structure in the humanities and social sciences in China is divided into distinct structures, and journals of different disciplines or research fields are divided into corresponding groups. This indicates that the knowledge structure boundary of the humanities and social sciences in China is relatively clear from the perspective of journal use. This study primarily explored the scientific research topics of the two groups of law journals. From the co-occurrence network of keywords, it can be clearly seen that although the research topics of the two groups of law journals overlap to a certain extent, there are significant differences in the specific research contents between the two groups.
|
Received: 17 May 2019
|
|
|
|
1 卫军朝, 蔚海燕. 科学结构及演化分析方法研究综述[J]. 图书与情报, 2011(4): 48-52. 2 赵红洲. 论科学结构[J]. 中州学刊, 1981(3): 59-65, 133. 3 Li J. Exploring the logic and landscape of the knowledge system: Multilevel structures, each multiscaled with complexity at the mesoscale[J]. Engineering, 2016, 2(3): 276-285. 4 张琳, 梁立明, 刘则渊, 等. 基于期刊聚类与SOOI分类体系的科学结构研究[J]. 科学学研究, 2012, 30(9): 1292-1300. 5 葛菲, 谭宗颖. 基于文献计量学的科学结构及其演化的研究方法述评[J]. 情报杂志, 2012, 31(12): 34-39, 50. 6 Janssens F, Zhang L, De Moor B, et al. Hybrid clustering for validation and improvement of subject-classification schemes[J]. Information Processing & Management, 2009, 45(6): 683-702. 7 张琳. 期刊混合聚类的学科分类与交叉学科结构研究[J]. 图书情报工作, 2013, 57(3): 78-84. 8 邱均平, 王菲菲. 基于作者互引分析的科学结构研究探析——以科学计量学为例[J]. 科学学研究, 2012, 30(6): 829-840. 9 巴志超, 李纲, 朱世伟. 科研合作网络的知识扩散机理研究[J]. 中国图书馆学报, 2016, 42(5): 68-84. 10 RafolsI, Meyer M. Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience[J]. Scientometrics, 2010, 82(2): 263-287. 11 章成志, 吴小兰. 跨学科研究综述[J]. 情报学报, 2017, 36(5): 523-535. 12 Gl?nzel W, Schubert A. A new classification scheme of science fields and subfields designed for scientometric evaluation purposes[J]. Scientometrics, 2003, 56(3): 357-367. 13 中国标准化研究院. GB/T 13745-2009中华人民共和国国家标准学科分类与代码表[S]. 2009. 14 中华人民共和国教育部. 学位授予和人才培养学科目录[EB/OL]. [2018-12-08]. http://www.moe.gov.cn/s78/A22/xwb_left/moe_833/201804/t20180419_333655.html. 15 国家图书馆《中国图书馆分类法》编辑委员会. 中国图书馆分类法[M]. 第五版. 北京: 国家图书馆出版社, 2010. 16 Small H. Co-citation in the scientific literature: A new measure of the relationship between two documents[J]. Journal of the American Society for Information Science, 1973, 24(4): 265-269. 17 Kessler M. An experimental study of bibliographic coupling between technical papers[J]. IEEE Transactions on Information Theory, 1963, 9(1): 49-51. 18 华萌, 陈仕吉, 周群, 等. 多学科期刊论文学科划分方法研究[J]. 情报杂志, 2015, 34(5): 76-80, 22. 19 Boyack K W, Klavans R, B?rner K. Mapping the backbone of science[J]. Scientometrics, 2005, 64(3): 351-374. 20 张琳. 基于期刊聚类的科学结构研究[D]. 大连: 大连理工大学, 2010. 21 张金柱, 韩涛, 王小梅. 利用参考文献的学科分类分析图书情报领域的学科交叉性[J]. 图书情报工作, 2013, 57(1): 108-111, 146. 22 刘玉仙. 基于共期刊学科类间关系构建全学科科学骨架图[J]. 情报学报, 2018, 37(6): 580-589. 23 滕立, 刘则渊, 王贤文, 等. 科学发现的知识结构——以宇称不守恒发现为例[J]. 科学学研究, 2012, 30(6): 820-828, 812. 24 Zuccala A, Robinson-Garcia N, Repiso R, et al. Using network centrality measures to improve national journal classification lists[OL]. https://arxiv.org/ftp/arxiv/papers/1606/1606.00240.pdf. 25 宋歌, 刘利. 学术期刊分群研究——以法学期刊为例[J]. 现代情报, 2013, 33(1): 91-97. 26 Rafols I, Meyer M. Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience[J]. Scientometrics, 2010, 82(2): 263-287. 27 Lin J. Divergence measures based on the Shannon entropy[J]. IEEE Transactions on Information Theory, 1991, 37(1): 145-151. 28 embeddingsword2vec[EB/OL]. [2019-01-05]. https://radimrehurek.com/gensim/models/word2vec.html. 29 Rousseeuw P J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65. |
|
|
|