|
|
Technological Interactions and Co-opetition Intelligence Based on Patent Citation Networks and Input-Output Analysis among Firms: The Case of Apple Ecosystem |
WANG Hailong, WANG Minyu, JIANG Zhaohua |
Institute of Science of Science and S&T Management, Dalian University of Technology, Dalian 116023 |
|
|
Abstract Considering a firm’s citing patents as technology input and its authorized patents as technology output, this paper aims to measure the technological interactions among Apple ecosystems. First, it conceptualizes a theoretical framework including the direct-citation coefficient, co-citation efficient, and coupling coefficient. Then, it estimates the technology influence coefficients and technology sensitivity coefficients. Further, it evaluates the comprehensive technology capabilities of 11 firms in Apple ecosystem, based on the patentee citation networks data from 1998 to 2014. Results show that Intel and AMD are technology leaders in the mobile intelligent terminals industry, Apple has a strong but gradually waning technology influence, and Samsung has a high and rapidly improving technology sensitivity. This method can be applied in other analyses such as industrial technology competence analysis and technology spillover and knowledge flow analysis among firms or regions.
|
Received: 30 May 2016
|
|
|
|
[1] Ernst H.Patent information for strategic technology management[J]. World Patent Information, 2003, 25(3): 233-242. [2] Hanel P.Interindustry flows of technology: an analysis of the Canadian patent matrix and input-output matrix for 1978-1989[J]. Technovation, 1994, 14(8): 529-548. [3] Nomaler O, Verspagen B.Knowledge flows, patent citations and the impact of science on technology[J]. Economic Systems Research, 2008, 20(4): 339-366. [4] Chakrabarti A K, Dror I.Technology transfers and knowledge interactions among defense firms in the USA—an analysis of patent citations[J]. International Journal of Technology Management, 1994, 9(5-7): 757-770. [5] Jaffe A B, Trajtenberg M, Henderson R.Geographic localization of knowledge spillover as evidenced by patent citations[J]. Quarterly Journal of Economics, 1993, 108(3): 577-598. [6] 姜照华, 王海龙, 马永伟. 管理学、经济学、数学和系统科学的关联性——中文期刊文献的投入产出分析[J]. 科学学与科学技术管理, 2010(5): 131-134. [7] 高继平, 丁堃, 滕立, 等. 专利—论文混合共被引网络下的知识流动探析[J]. 科学学研究, 2011, 29(8): 1184-1189. [8] 黄鲁成, 武丹, 张静, 等. 基于专利的技术竞争态势分析框架[J]. 情报学报, 2014, 33(3): 284-295. [9] 许海云, 方曙. 基于专利功效矩阵的技术主题关联分析及核心专利挖掘[J]. 情报学报, 2014, 33(2): 158-166. [10] 王贤文, 徐申萌, 彭恋, 等. 基于专利共类分析的技术网络结构研究: 1971~2010[J]. 情报学报, 2013, 32(2): 198-205. [11] 黄晓斌, 梁辰. 专利技术的关联网络分析——以4G通信技术领域为例[J]. 情报学报, 2015, 34(1): 92-104. [12] 胡健, 印玺. 基于专利引用的技术流矩阵的分析——对石油天然气产业技术溢出效应的测度[J]. 科学学研究, 2010, 28(12): 1843-1848. [13] 卢璐. 能源产业技术溢出的测度研究[J]. 商, 2013(18): 265, 255. [14] 里昂惕夫. 投入产出经济学[M]. 北京: 商务印书馆, 1982. [15] 刘起运. 宏观经济数量分析方法与模型[M]. 北京: 高等教育出版社, 2002. [16] Liu C Y, Yang J C.Decoding patent information using patent maps[J]. Data Science Journal, 2008, 7(1): 14-22. [17] Belenzon S, Patacconi A.Innovation and firm value: An investigation of the changing role of patents, 1985-2007[J]. Research Policy, 2013, 42(8): 1496-1510. [18] 陈锡康, 杨翠红, 等. 投入产出技术[M]. 北京: 科学出版社, 2011. [19] Brian Caulfield. Apple’s ecosystem [J/OL]. http://www.forbes. com/2010/02/09/intel-nvidia-htc-technology-business-intelligence-apple_slide.html. 2015.01.09. |
|
|
|