|
|
Research on the Dynamics and Trends of the Development of Public Opinion Topic Maps in Social Networks |
Wang Xiwei1,2, Wei Yanan1, Xing Yunfei1, Wang Duo1 |
1.School of Management, Jilin University, Changchun 130022 2.Bigdata Management Research Center, Jilin University, Changchun 130022 |
|
|
Abstract With the development of social media technology, the dissemination and supervision of public opinion on social networks have become a new concern of domestic and foreign scholars, relevant industries, and public opinion supervision departments. This research is based on the collected knowledge map of network public opinion and the social media environment of the relevant literature at home and abroad. Qualitative analysis and a knowledge map visualization method are used to comb through domestic and foreign scholars in the social media network public opinion research hotspot in the field of knowledge maps. Analyze the future development trend of big data-driven social network public opinion topic map. This research helps scholars at home and abroad to understand the research hotspots and development trends of the topic map of social network public opinion. It provides research ideas and directions for the study of the topic map of social network public opinion driven by big data theoretically and practically, and provides guidance for the future supervision of relevant regulatory authorities.
|
Received: 23 March 2019
|
|
|
|
1 曾天山. 内容之马与方法之车——以方法创新提高教育研究质量[J]. 中国教育学刊, 2012(10): 71-78. 2 蔡立辉, 杨欣翥. 大数据在社会舆情监测与决策制定中的应用研究[J]. 行政论坛, 2015, 22(2): 1-10. 3 旷芸, 梁宗经, 雷应喜. 基于信息可视化的空间经济学科学计量研究[J]. 科技管理研究, 2012, 32(21): 219-224. 4 ZinsC. Knowledge map of information science[J]. Journal of the American Society for Information Science and Technology, 2007, 58(4): 526-535. 5 BalaidA, Abd RozanM Z, HikmiS N, et al. Knowledge maps: A systematic literature review and directions for future research[J]. International Journal of Information Management, 2016, 36(3): 451-475. 6 ZhuG G, IglesiasC A. Computing semantic similarity of concepts in knowledge graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(1): 72-85. 7 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253. 8 焦晓静, 王兰成. 知识图谱的概念辨析与学科定位研究[J]. 图书情报工作, 2015, 59(15): 5-11. 9 冯新翎, 何胜, 熊太纯, 等. “科学知识图谱”与“Google知识图谱”比较分析——基于知识管理理论视角[J]. 情报杂志, 2017, 36(1): 149-153. 10 Blázquez-RuizJ, Guerrero-BoteV P, Moya-AnegónF. New scientometric-based knowledge map of food science research (2003 to 2014)[J]. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(6): 1040-1055. 11 KimH. Building a K-Pop knowledge graph using an entertainment ontology[J]. Knowledge Management Research & Practice, 2017, 15(2): 305-315. 12 ChiY, QinY, SongR, et al. Knowledge graph in smart education: A case study of entrepreneurship scientific publication management[J]. Sustainability, 2018, 10(4): 995. 13 廖胜姣, 肖仙桃. 科学知识图谱应用研究概述[J]. 情报理论与实践, 2009, 32(1): 122-125. 14 王伟军, 王金鹏. 科学知识图谱在技术预见中的应用探析[J]. 情报科学, 2010, 28(8): 1127-1131. 15 孙宁, 陈雅, WoS视域下国际网络舆情研究知识图谱分析[J]. 情报资料工作, 2014(4): 21-26. 16 王仁武, 袁毅, 袁旭萍. 基于深度学习与图数据库构建中文商业知识图谱的探索研究[J]. 图书与情报, 2016(1): 110-117. 17 荣霞. 我国期刊编辑出版研究热点及趋势研究——基于CiteSpace可视化分析[J]. 出版广角, 2018(17): 49-51. 18 常亮, 张伟涛, 古天龙, 等. 知识图谱的推荐系统综述[J]. 智能系统学报, 2019, 14(2): 207-216. 19 浅谈知识图谱基础[EB/OL]. (2017-05-04) [2019-02-23]. https://www.jianshu.com/p/4f09043e22ea. 20 KimS, SuhE, HwangH. Building the knowledge map: An industrial case study[J]. Journal of Knowledge Management, 2003, 7(2): 34-45. 21 AbelM H. Knowledge map-based web platform to facilitate organizational learning return of experiences[J]. Computers in Human Behavior, 2015, 51: 960-966. 22 ShiL X, LiS J, YangX R, et al. Semantic health knowledge graph: Semantic integration of heterogeneous medical knowledge and services[J]. BioMed Research International, 2017, 2017: 1-12. 23 ShawR S. The learning performance of different knowledge map construction methods and learning styles moderation for programming language learning[J]. Journal of Educational Computing Research, 2019, 56(8): 1407-1429. 24 魏瑞斌. 基于共词网络的学术期刊知识图谱构建[J]. 情报杂志, 2011, 30(10): 36-42. 25 张洋, 谢卓力. 基于多源网络学术信息聚合的知识图谱构建研究[J]. 图书情报工作, 2014, 58(22): 84-94. 26 宋宁远. 面向智慧数据的科学知识图谱构建——以SciGraph为例[J]. 科技与出版, 2017(11): 17-19. 27 Franco-SalvadorM, RossoP, Montes-y-GómezM. A systematic study of knowledge graph analysis for cross-language plagiarism detection[J]. Information Processing & Management, 2016, 52(4): 550-570. 28 SmithD A. Online interactive thematic mapping: Applications and techniques for socio-economic research[J]. Computers, Environment and Urban Systems, 2016, 57: 106-117. 29 ChenX D, SunY, HeT Z. Historical retrospect and future prospect of research on effective teaching in China—Knowledge mapping analysis based on the research over the past three decades (1986-2016)[J]. Advances in Higher Education, 2018, 2(2): 1-10. 30 雷二庆. h指数知识图谱分析[J]. 科研管理, 2010, 31(S1): 20-23, 38. 31 孙建军. 链接分析: 知识基础、研究主体、研究热点与前沿综 述——基于科学知识图谱的途径[J]. 情报学报, 2014, 33(6): 659-672. 32 曹树金, 吴育冰, 韦景竹, 等. 知识图谱研究的脉络、流派与趋势——基于SSCI与CSSCI期刊论文的计量与可视化[J]. 中国图书馆学报, 2015, 41(5): 16-34. 33 尹怀琼, 刘晓英, 周良文, 等. 我国图书馆联盟研究的文献计量和可视化分析——基于Netdraw和CiteSpace软件的比较研究[J]. 图书馆, 2018(2): 43-49. 34 ChoiS. The two-step flow of communication in Twitter-based public forums[J]. Social Science Computer Review, 2015, 33(6): 696-711. 35 KimY, JeongS R. Opinion-Mining methodology for social media analytics[J]. KSII Transactions on Internet and Information Systems, 2015, 9(1): 391-406. 36 HamptonK N, ShinI, LuW X. Social media and political discussion: When online presence silences offline conversation[J]. Information, Communication & Society, 2017: 20(7): 1090-1107. 37 OverbeyL A, BatsonS C, LyleJ, et al. Linking Twitter sentiment and event data to monitor public opinion of geopolitical developments and trends[C]// Proceedings of the 10th International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation. Cham: Springer, 2017: 223-229. 38 张宁熙. 大数据在突发公共事件网络舆情信息工作中的应用[J]. 现代情报, 2015, 35(6): 38-42. 39 吴鹏, 金贝贝, 强韶华. 基于BDI-Agent模型的突发事件网络舆情应急响应建模研究[J]. 现代图书情报技术, 2016(Z1): 32-41. 40 陈璟浩, 李纲. 突发社会安全事件网络舆情演化的生存分析——基于70起重大社会安全事件的分析[J]. 情报杂志, 2016, 35(4): 70-74. 41 马哲坤, 涂艳. 基于知识图谱的网络舆情突发话题内容监测研究[J]. 情报科学, 2019, 37(2): 33-39. 42 NeuendorfK A, SkalskiP D, JeffresL W, et al. Senses of humor, media use, and opinions about the treatment of marginalized groups[J]. International Journal of Intercultural Relations, 2014, 42: 65-76. 43 FuriniM, TamaniniV. Location privacy and public metadata in social media platforms: attitudes, behaviors and opinions[J]. Multimedia Tools and Applications, 2015, 74(21): 9795-9825. 44 ZhaoY Y, QinB, LiuT, et al. Social sentiment sensor: A visualization system for topic detection and topic sentiment analysis on microblog[J]. Multimedia Tools and Applications, 2016, 75(15): 8843-8860. 45 KimY, DwivediR, ZhangJ, et al. Competitive intelligence in social media Twitter: iPhone 6 vs. Galaxy S5[J]. Online Information Review, 2016, 40(1): 42-61. 46 AbedinB, BabarA. Institutional vs. non-institutional use of social media during emergency response: A case of Twitter in 2014 Australian bush fire[J]. Information Systems Frontiers, 2018, 20(4): 729-740. 47 李磊, 刘继. 面向舆情主题的微博用户行为聚类实证分析[J]. 情报杂志, 2014, 33(3): 118-121. 48 朱毅华, 张超群. 基于影响模型的网络舆情演化与传播仿真研究[J]. 情报杂志, 2015, 34(2): 28-36. 49 廖海涵, 靳嘉林, 王曰芬. 网络舆情事件中微博用户行为特征和关系分析——以新浪微博“雾霾调查: 穹顶之下”为例[J]. 情报资料工作, 2016(3): 12-18. 50 郭淼, 焦垣生. 网络舆情传播与演变背景下的微博信息转发预测分析[J]. 情报杂志, 2016, 35(5): 46-51, 37. 51 赵丹, 王晰巍, 李师萌, 等. 新媒体环境下的网络舆情特征量及行为规律研究——基于信息生态理论[J]. 情报学报, 2017, 36(12): 1224-1232. 52 MulderK. The dynamics of public opinion on nuclear power. Interpreting an experiment in the Netherlands[J]. Technological Forecasting and Social Change, 2012, 79(8): 1513-1524. 53 WuY C, LiuS X, YanK, et al. OpinionFlow: Visual analysis of opinion diffusion on social media[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1763-1772. 54 FanZ C, QiuX G, DaiW H, et al. A meta-modeling framework for a specific social domain: Public opinion event[J]. Computer Science and Information Systems, 2015, 12(2): 743-765. 55 SohnD, GeidnerN. Collective dynamics of the spiral of silence: The role of ego-network size[J]. International Journal of Public Opinion Research, 2016, 28(1): 25-45. 56 ZhangG W, XuL Y, XueY L. Model and forecast stock market behavior integrating investor sentiment analysis and transaction data[J]. Cluster Computing, 2017, 20(1): 789-803. 57 FengZ. Hot news mining and public opinion guidance analysis based on sentiment computing in network social media[J]. Personal and Ubiquitous Computing, 2019, 23(3-4): 373-381. 58 ZhangM C, ZhengR J, ChenJ, et al. Emotional component analysis and forecast public opinion on micro-blog posts based on maximum entropy model[J]. Cluster Computing, 2019, 22(S3): 6295-6304. 59 王高飞, 李明, 李梅. 基于系统动力学的移动社交网络舆情应对策略研究[J]. 情报科学, 2016, 34(10): 38-42. 60 宾宁, 杨树标, 胡凤. 突发事件网络舆情演化的博弈分析——以茂名PX事件为例[J]. 情报探索, 2017(1): 32-39. 61 曾群, 程晓, 周小渝, 等. 基于双路径模型的网络舆情在社交网络上的传播机制研究[J]. 情报科学, 2017, 35(6): 29-33, 43. 62 崔鹏, 张巍, 何毅, 等. 突发公共事件网络舆情演化及政府应对能力研究[J]. 现代情报, 2018, 38(2): 75-83, 95. 63 KimuraM, SaitoK, NakanoR. Extracting influential nodes for information diffusion on a social network[C]// Proceedings of the National Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2007: 1371-1376. 64 CanoA E, MazumdarS, CiravegnaF. Social influence analysis in microblogging platforms—A topic-sensitive based approach[J]. Semantic Web, 2014, 5(5): 357-372. 65 MahyarH, HasheminezhadR, GhalebiE, et al. Identifying central nodes for information flow in social networks using compressive sensing[J]. Social Network Analysis and Mining, 2018, 8: 33. 66 TuluM M, HouR H, YounasT. Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[J]. IEEE Access, 2018, 6: 7390-7401. 67 AiC, ChenB, HeL N, et al. The national geographic characteristics of online public opinion propagation in China based on WeChat network[J]. GeoInformatica, 2018, 22(2): 311-334. 68 黄微, 李瑞, 孟佳林. 大数据环境下多媒体网络舆情传播要素及运行机理研究[J]. 图书情报工作, 2015, 59(21): 38-44, 62. 69 ChengY, HuangY H C, ChanC M. Public relations, media coverage, and public opinion in contemporary China: Testing agenda building theory in a social mediated crisis[J]. Telematics and Informatics, 2017, 34(3): 765-773. 70 王晰巍, 邢云菲, 王楠阿雪, 等. 新媒体环境下突发事件网络舆情信息传播及实证研究——以新浪微博“南海仲裁案”话题为例[J]. 情报理论与实践, 2017, 40(9): 1-7. 71 侯治平, 黄少杰, 廉同辉, 等. 基于语义关联分析的学术网络舆情传播研究——以科学网屠呦呦获诺贝尔奖博文为例[J]. 情报杂志, 2017, 36(5): 118-123. 72 唐涛. 基于大数据的网络舆情分析方法研究[J]. 现代情报, 2014, 34(3): 3-6, 11. 73 王晰巍, 邢云菲, 张柳, 等. 社交媒体环境下的网络舆情国内外发展动态及趋势研究[J]. 情报资料工作, 2017(4): 6-14. 74 白文倩. 基于引文分析方法的教育技术学科知识图谱构建[D]. 武汉: 华中师范大学, 2012: 17-28. 75 国家社科基金重大项目“大数据驱动的社交网络舆情主题图谱构建及调控策略研究”开题[EB/OL]. (2019-01-06) [2019-02-28]. http://www.cssn.cn/gd/gd_rwdb/gd_zxjl_1710/201901/t20190106_4806848.shtml. 76 刘挺. 从知识图谱到事理图谱[EB/OL]. (2017-11-16) [2019-02-26]. https://blog.csdn.net/tgqdt3ggamdkhaslzv/article/details/785 57548. |
|
|
|