|
|
Key Node Mining of Weibo Public Opinion Based on Super Network Theory |
Zhang Lianfeng1, Zhou Honglei1, Wang Dan1, Zhang Haitao1,2 |
1.School of Management, Jilin University, Changchun 130022 2.Information Resource Research Center, Jilin University, Changchun 130022 |
|
|
Abstract In order to better excavate the key nodes in microblog public opinion, guide them with people-oriented ideas, and create a sunny space for microblog, this research is used in combination with the super-network structure in the Weibo public opinion network, super-network, and simulation analysis methods to mine the key nodes in the microblog and analyze their emotional tendencies. It can clearly identify the key nodes in Weibo’s public opinion and employ different approaches of leading the strategy, which are beneficial in alleviating the emotions of netizens and purifying the microblogging network space by point and face.
|
Received: 12 July 2019
|
|
|
|
1 高俊峰. 网络舆情场内领袖型信息受众的观点动员能力测度[J]. 情报科学, 2019, 37(1): 37-42. 2 詹天成, 曹子君, 王忠义. 基于社会网络分析的微博媒体领袖间的关系研究[J]. 情报科学, 2018, 36(8): 15-21, 154. 3 魏莹, 李锋. 基于主路径分析的关键节点识别与谣言扩散抑制研究[J]. 情报科学, 2018, 36(6): 13-19. 4 王丹, 张海涛, 刘雅姝, 等. 微博舆情关键节点情感倾向分析及思想引领研究[J]. 图书情报工作, 2019, 63(4): 15-22. 5 马宁, 刘怡君. 基于超网络中超边排序算法的网络舆论领袖识别[J]. 系统工程, 2013, 31(9): 1-10. 6 梁晓贺, 田儒雅, 吴蕾, 等. 基于超网络的微博舆情主题挖掘方法[J]. 情报理论与实践, 2017, 40(10): 100-105. 7 黄秀. 基于多模态社交媒体数据源的用户画像构建的研究[D]. 成都: 电子科技大学, 2018. 8 张培晶, 宋蕾. 基于LDA的微博文本主题建模方法研究述评[J]. 图书情报工作, 2012, 56(24): 120-126. 9 席运江, 赵燕, 廖晓, 等. 基于LDA的企业微博主题传播超网络建模及分析方法[J]. 管理学报, 2018, 15(3): 434-441. 10 ChenY H, KrishnaT, EmerJ S, et al. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks[J]. IEEE Journal of Solid-State Circuits, 2017, 52(1): 127-138. 11 LeCunY, BottouL, BengioY, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. 12 李枫林, 柯佳. 基于深度学习框架的实体关系抽取研究进展[J]. 情报科学, 2018, 36(3): 169-176. 13 吴鹏, 刘恒旺, 沈思. 基于深度学习和OCC情感规则的网络舆情情感识别研究[J]. 情报学报, 2017, 36(9): 972-980. 14 KimY. Convolutional neural networks for sentence classification[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2014: 1746-1751. 15 蔡国永, 夏彬彬. 基于卷积神经网络的图文融合媒体情感预测[J]. 计算机应用, 2016, 36(2): 428-431, 477. 16 张磊. 微博超网络模型的建立及关键节点识别方法研究[D]. 南京: 南京航空航天大学, 2016. |
|
|
|