|
|
A Method Considering Local and Global Information for Constructing Stereoscopic and Accurate Portraits of Scientific Researchers |
Zhang Yanan, Huang Jingli, Wang Gang |
School of Management, Hefei University of Technology, Hefei 230009 |
|
|
Abstract By constructing scientific research behavior portraits, researchers can easily use various research services for efficiency. Existing research often abstracts the portrait problem into a multi-classification problem without considering the full use of information and the problem of updating portraits. Accordingly, this study proposes a scientific research behavioral portrait method for researchers considering local and global information and introduces a deep learning method. Deep learning can extract highly abstract features for sequence modeling, extracting partial portraits, and combining global information to build stereoscopic and accurate portraits. Finally, based on the actual scientific research behavior data, the method proposed in this study is verified, and its effectiveness is proven.
|
Received: 24 April 2019
|
|
|
|
1 创新引领发展, 建设科技强国[N]. 经济日报2017-11-03(010). 2 涂静. 科研合作网络中知识共享的演化研究[J]. 情报理论与实践, 2018, 41(2): 39-45. 3 FawcettT, ProvostF J. Combining data mining and machine learning for effective user profiling[C]//Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining. Palo Alto: AAAI Press, 1996: 8-13. 4 袁莎, 唐杰, 顾晓韬. 开放互联网中的学者画像技术综述[J]. 计算机研究与发展, 2018, 55(9): 1903-1919. 5 余传明, 田鑫, 郭亚静, 等. 基于行为-内容融合模型的用户画像研究[J]. 图书情报工作, 2018, 62(13): 54-63. 6 姚迪, 张超, 黄建辉, 等. 时空数据语义理解: 技术与应用[J]. 软件学报, 2018, 29(7): 2018-2045. 7 黄文彬, 吴家辉, 徐山川, 等. 数据驱动的移动用户行为研究框架与方法分析[J]. 情报科学, 2016, 34(7): 14-20, 40. 8 BurgerJ D, HendersonJ, KimG, et al. Discriminating gender on Twitter[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2011: 1301-1309. 9 曾春, 邢春晓, 周立柱. 个性化服务技术综述[J]. 软件学报, 2002, 13(10): 1952-1961. 10 何娟. 基于用户个人及群体画像相结合的图书个性化推荐应用研究[J]. 情报理论与实践, 2019, 42(1): 129-133, 160. 11 王凌霄, 沈卓, 李艳. 社会化问答社区用户画像构建[J]. 情报理论与实践, 2018, 41(1): 129-134. 12 林燕霞, 谢湘生. 基于社会认同理论的微博群体用户画像[J]. 情报理论与实践, 2018, 41(3): 142-148. 13 张海涛, 崔阳, 王丹, 等. 基于概念格的在线健康社区用户画像研究[J]. 情报学报, 2018, 37(9): 912-922. 14 MisloveA, ViswanathB, GummadiK P, et al. You are who you know: Inferring user profiles in online social networks[C]//Proceedings of the Third ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2010: 251-260. 15 BleiD M, NgA Y, JordanM I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(1): 993-1022. 16 RamageD, HallD, NallapatiR, et al. Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora[C]// Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2009: 248-256. 17 GravesA, MohamedA R, HintonG. Speech recognition with deep recurrent neural networks[C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE, 2013: 6645-6649. 18 HochreiterS, SchmidhuberJ. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. 19 LuZ Y, TanH H, LiW J. An evolutionary context-aware sequential model for topic evolution of text stream[J]. Information Sciences, 2019, 473: 166-177. 20 RiedmillerM. Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms[J]. Computer Standards & Interfaces, 1994, 16(3): 265-278. 21 ZhangX, ZhaoJ B, LeCunY. Character-level convolutional networks for text classification[C]//Proceedings of the Conference on neural Information Processing Systems. 2015, 28: 649-657. |
|
|
|