|
|
Evaluation of Authors Influence Based on Principal Component Analysis and a Neural Network |
Li Qinmin, and Guo |
Business School, University of Shanghai for Science and Technology, Shanghai 200093 |
|
|
Abstract To better analyze the influence of scientific researchers, a comprehensive evaluation of influence is performed by combining six factors of researchers’ influence with the method of multivariate statistics. First, the initial H index is obtained and improved. A comprehensive index based on WRSR (weighted rank sum ratio) and the principal component from principal component analysis is then established. Finally, a prediction model is obtained by training a neural network. The empirical results show that, compared with other traditional indicators, the method has good distinction, correlation, and comprehensiveness, enabling the precise evaluation of the influence of scientific researchers.
|
Received: 05 June 2018
|
|
|
|
1 叶鹰, 唐健辉, 赵星, 等. h指数与h型指数研究[M]. 北京: 科学出版社, 2011: 6-7, 21-22. 2 MurrayA G, WardehM, McintyreK M. Using the H-index to assess disease priorities for salmon aquaculture[J]. Preventive Veterinary Medicine, 2016, 126: 199-207. 3 JamjoomA A B, WigginsA N, loanJ J M, et al. Academic productivity of neurosurgeons working in the United Kingdom: Insights from the H-Index and its variants[J]. World Neurosurgery, 2016, 86: 287-293. 4 EggheL. Dynamic h-index: The Hirsch index in function of time[J]. Journal of the American Society for Information Science and Technology, 2007, 58(3): 452-454. 5 彭爱东, 于倩倩. h指数、g指数和累积影响因子在期刊评价中的相关性研究——以综合性社科期刊为例[J]. 情报科学, 2012, 30(11): 1645-1651. 6 WürtzM, SchmidtM. The stratified H-index[J]. Annals of Epidemiology, 2016, 26(4): 299-300. 7 邱玉婷, 李济沅, 邓旭, 等. 基于改进TOPSIS-RSR法的电能质量综合评价[J]. 高压电器, 2018, 54(1): 44-50. 8 郑航. 基于改进主成分分析法的Topsis在学术期刊评价中的应用研究[J]. 重庆工商大学学报(自然科学版), 2018, 35(1): 91-97. 9 禹建丽, 黄鸿琦, 苗满香. 基于主成分分析与神经网络的多响应参数优化[J]. 系统仿真学报, 2018, 30(1): 176-183, 190. 10 何晓群. 应用多元统计分析[M]. 第2版. 北京: 中国统计出版社, 2015: 210-213. 11 何伟军, 孔阳, 崔勇, 等. 基于主成分分析法的我国用电量的影响因素分析[J]. 数学的实践与认识, 2018, 48(1): 67-74. 12 WangZ J, DangS N, XingY, et al. Applying rank sum ratio (RSR) to the evaluation of feeding practices behaviors, and its associations with infant health risk in rural Lhasa, Tibet[J]. International Journal of Environmental Research and Public Health, 2015, 12(12): 15173-15181. 13 张德丰. MATLAB神经网络编程[M]. 北京: 化学工业出版社, 2011: 132-133. 14 闻新, 李新, 张兴旺. 应用MATLAB实现神经网络[M]. 北京: 国防工业出版社, 2015: 109-130. 15 戴雯, 张治惠. 基于BP神经网络的上市公司财务绩效评价[J]. 阴山学刊(自然科学版), 2018, 32(3): 116-119. 16 朱彦. 家庭服务机器人整体造型感性设计的BP神经网络应用[J]. 包装工程, 2018, 39(4): 151-154. 17 王雨, 郭进利. 基于灰色关联分析的作者影响力综合评价方法[J]. 情报杂志, 2017, 36(3): 185-190, 184. 18 信桂新, 杨朝现, 杨庆媛, 等. 用熵权法和改进TOPSIS模型评价高标准基本农田建设后效应[J]. 农业工程学报, 2017, 33(1): 238-249. 19 熊国经, 熊玲玲, 陈小山. 组合评价和复合评价模型在学术期刊评价优越性的实证研究[J]. 现代情报, 2017, 37(1): 81-88. |
|
|
|