|
|
Direct Measurement of the Degree of Interdisciplinarity |
Ma Ruimin, Yan Xiaohui, and Shen |
Institution of Management and Decision, Research Center for Science Evaluation, Shanxi University, Taiyuan 030006 |
|
|
Abstract At present, interdisciplinary integration is becoming more pronounced, thus requiring additional collaborative innovation of scholars from different disciplines. Accordingly, the measurement of the degree of interdisciplinarity becomes an important research task. After elaborating the theoretical basis of model construction, a comprehensive model of direct interdisciplinary measurement is constructed from three aspects: direct citation, bibliographic coupling, and co-keywords. Based on Web of Science data, this paper discusses the interdisciplinary relation between information science and library science, as well as six other subjects related to management, computer science, and information systems. In addition, the study conducts empirical research from two aspects: internal comparisons (comprehensive vs. single-indicator models) and external comparisons with current mainstream indicator models. The results prove that the model proposed in this paper has comparative advantages: it is more scientific in principle, easier to manipulate, better aligned with the current situation, stronger discrimination, and the results are easier to interpret. Therefore, it provides an effective method to detect the degree of interdisciplinarity.
|
Received: 19 February 2019
|
|
|
|
1 PriceD J D. Little science, big science[M]. New York: Columbia University Press, 1963. 2 WagnerC S, RoessnerJ D, BobbK, et al. Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature[J]. Journal of Informetrics, 2011, 5(1): 14-26. 3 National Academy of Sciences, National Academy of Engineering, Institute of Medicine. Facilitating interdisciplinary research[M]. Washington DC: The National Academies Press, 2004. 4 章成志, 吴小兰. 跨学科研究综述[J]. 情报学报, 2017, 36(5): 523-535. 5 许海云, 尹春晓, 郭婷, 等. 学科交叉研究综述[J]. 图书情报工作, 2015, 59(5): 119-127. 6 VugteveenP, LendersR, Van den BesselaarP. The dynamics of interdisciplinary research fields: The case of river research[J]. Scientometrics, 2014, 100(1): 73-96. 7 崔雷. 专题文献高被引论文的时间分布与同被引聚类分析[J]. 情报学报, 1995, 14(1): 54-61. 8 邱均平, 温芳芳. 近五年来图书情报学研究热点与前沿的可视化分析——基于13种高影响力外文源刊的计量研究[J]. 中国图书馆学报, 2011, 37(2): 51-60. 9 郭骅祥. 我国图书情报学学科交叉计量分析[D]. 郑州: 郑州大学, 2018. 10 van RaanA F J, van LeeuwenT N. Assessment of the scientific basis of interdisciplinary, applied research: Application of bibliometric methods in Nutrition and Food Research[J]. Research Policy, 2002, 31(4): 611-632. 11 KarunanK, LathabaiH H, PrabhakaranT. Discovering interdisciplinary interactions between two research fields using citation networks[J]. Scientometrics, 2017, 113(1): 335-367. 12 XuH Y, GuoT, YueZ H, et al. Interdisciplinary topics of information science: A study based on the terms interdisciplinarity index series[J]. Scientometrics, 2016, 106(2): 583-601. 13 KleinJ T. Evaluation of interdisciplinary and transdisciplinary research: A literature review[J]. American Journal of Preventive Medicine, 2008, 35(2 suppl): S116-S123. 14 PorterA L, KongthonA, LuJ C. Research profiling: Improving the literature review[J]. Scientometrics, 2002, 53: 351. 15 SmallH. Maps of science as interdisciplinary discourse: co-citation contexts and the role of analogy[J]. Scientometrics, 2010, 83(3): 835-849. 16 ChiR, YoungJ. The interdisciplinary structure of research on intercultural relations: a co-citation network analysis study[J]. Scientometrics, 2013, 96(1): 147-171. 17 MorilloF, BordonsM, GómezI. An approach to interdisciplinarity through bibliometric indicators[J]. Scientometrics, 2001, 51(1): 203-222. 18 SchwechheimerH, WinterhagerM. Mapping interdisciplinary research fronts in neuroscience: A bibliometric view to retrograde amnesia[J]. Scientometrics, 2001, 51(1): 311-318. 19 杨良斌, 周秋菊, 金碧辉. 基于文献计量的跨学科测度及实证研究[J]. 图书情报工作, 2009, 53(10): 87-90, 115. 20 许海云, 刘春江, 雷炳旭, 等. 学科交叉的测度、可视化研究及应用——一个情报学文献计量研究案例[J]. 图书情报工作, 2014, 58(12): 95-101. 21 魏建香. 学科交叉知识发现及其可视化研究[D]. 南京: 南京大学, 2010. 22 PorterA L, RafolsI. Is science becoming more interdisciplinary? Measuring and mapping six research fields over time[J]. Scientometrics, 2009, 81(3): 719-745. 23 HuangM H, ChangY W. A comparative study of interdisciplinary changes between information science and library science[J]. Scientometrics, 2012, 91(3): 789-803. 24 SaltonG, McGillM J. Introduction to modern information retrieval[M]. New York: McGraw-Hill Book Co., 1983. 25 ShannonC E. A mathematical theory of communication[J]. Bell Systems Technical Journal, 2014, 27(4): 623-656. 26 StirlingA. A general framework for analysing diversity in science, technology and society[J]. Journal of the Royal Society Interface, 2007, 4(15): 707-719. 27 PeiR M, PorterA L. Profiling leading scientists in nanobiomedical science: Interdisciplinarity and potential leading indicators of research directions[J]. R&D Management, 2011, 41(3): 288-306. 28 ZhangL, RousseauR, Gl?nzelW. Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account[J]. Journal of the Association for Information Science and Technology, 2016, 67(5): 1257-1265. 29 徐庶睿, 卢超, 章成志. 术语引用视角下的学科交叉测度——以PLOS ONE上六个学科为例[J]. 情报学报, 2017, 36(8): 53-64. 30 吴亚平, 陈迪, 王继民. 从JoI期刊载文窥探计量学主题演化与学科交叉[J]. 数字图书馆论坛, 2015(8): 66-70. 31 E. 加菲尔德, 徐军生. 科学与引文索引[J]. 图书情报知识, 1985(2): 33-37. 32 王菲菲, 杨思洛. 国内情报学作者互引分析与学科结构揭示[J]. 情报资料工作, 2014(5): 21-27. 33 马瑞敏. 作者引用网络基本理论模式研究[J]. 晋图学刊, 2015(4): 1-8. 34 马瑞敏, 倪超群. 作者耦合分析: 一种新学科知识结构发现方法的探索性研究[J]. 中国图书馆学报, 2012, 38(2): 4-11. 35 CamposA, AmorA, GonzálezM A. The importance of the keyword-generation method in keyword mnemonics[J]. Experimental Psychology, 2004, 51(2): 125-131. 36 GiampaoliD, CiambottiM, BontisN. Knowledge management, problem solving and performance in top Italian firms[J]. Journal of Knowledge Management, 2017, 21(2): 355-375. 37 孙宇. 一种基于Jaccard相似度的社团发现方法[J]. 电子技术与软件工程, 2016(3): 20. 38 俞婷婷, 徐彭娜, 江育娥, 等. 基于改进的Jaccard系数文档相似度计算方法[J]. 计算机系统应用, 2017, 26(12): 137-142. 39 邵瑞华, 李亮, 刘勐. 学科交叉程度与文献学术影响力的关系研究——以图书情报学为例[J]. 情报杂志, 2018, 37(3): 146-151. 40 李林, 李秀霞, 刘超, 等. 跨学科知识贸易动态影响和扩散模式研究——以图书情报学和管理学为例[J]. 情报杂志, 2017, 36(2): 182-186, 158. 41 史盛楠, 李秀霞, 宋呈玉, 等. 基于CTM模型的学科间知识交流分析——以图书情报学和计算机信息科学间的知识交流为例[J]. 情报理论与实践, 2018, 41(7): 99-104, 71. 42 心理学报编委会. 心理学如何为社会主义建设服务——怎样处理基本理论研究和应用研究的关系[J]. 心理学报, 1991, 23(4): 337-354. 43 杨思洛, 韩瑞珍. 基于知识图谱的国内外图书馆学科内容比较研究[J]. 图书馆, 2014(1): 72-76. |
|
|
|