Construction of User-Trusted Explainable Models for Academic Information Recommendation
Chen Yunyi1, Wu Dan1,2, Xia Zishuo1
1.School of Information Management, Wuhan University, Wuhan 430072 2.Center for Studies of Human-Computer Interaction and User Behavior, Wuhan University, Wuhan 430072
1 IBM. 什么是可解释AI?[EB/OL]. [2024-04-29]. https://www.ibm.com/cn-zh/topics/explainable-ai. 2 Gunning D. DARPA’s explainable artificial intelligence (XAI) program[C]// Proceedings of the 24th International Conference on Intelligent User Interfaces. New York: ACM Press, 2019: ii. 3 发展负责任的人工智能: 新一代人工智能治理原则发布[EB/OL]. (2019-06-17) [2023-04-29]. https://www.most.gov.cn/kjbgz/201906/t20190617_147107.html. 4 吴丹, 孙国烨. 迈向可解释的交互式人工智能: 动因、途径及研究趋势[J]. 武汉大学学报(哲学社会科学版), 2021, 74(5): 16-28. 5 Harper R H R. The role of HCI in the age of AI[J]. International Journal of Human–Computer Interaction, 2019, 35(15): 1331-1344. 6 熊回香, 唐明月, 叶佳鑫, 等. 融合加权异质网络与网络表示学习的学术信息推荐研究[J]. 现代情报, 2023, 43(5): 23-34. 7 Liu H F, Jing L P, Wen J X, et al. Interpretable deep generative recommendation models[J]. Journal of Machine Learning Research, 2021, 22(1): Article No.202. 8 Wang W J, Lin X Y, Feng F L, et al. Generative recommendation: towards next-generation recommender paradigm[OL]. (2024-02-25). https://arxiv.org/pdf/2304.03516. 9 Durán J M. Dissecting scientific explanation in AI (sXAI): a case for medicine and healthcare[J]. Artificial Intelligence, 2021, 297: 103498. 10 Guidotti R, Monreale A, Ruggieri S, et al. A survey of methods for explaining black box models[J]. ACM Computing Surveys, 2019, 51(5): Article No.93. 11 靳庆文, 朝乐门, 孟刚. AI治理中的算法解释及其实现方法研究[J]. 情报资料工作, 2022, 43(5): 16-23. 12 Belle V, Papantonis I. Principles and practice of explainable machine learning[J]. Frontiers in Big Data, 2021, 4: 688969. 13 王冬丽, 杨珊, 欧阳万里, 等. 人工智能可解释性: 发展与应用[J]. 计算机科学, 2023, 50(S1): 19-25. 14 孟韬, 陈梦圆, 张天锴, 等. 交互失误情境下交互式人工智能拟人化的负面影响——基于ChatGPT和搜索引擎的实验证据[J]. 情报理论与实践, 2024, 47(1): 84-91. 15 Weisberg D S, Landrum A R, Hamilton J, et al. Knowledge about the nature of science increases public acceptance of science regardless of identity factors[J]. Public Understanding of Science, 2021, 30(2): 120-138. 16 张乐, 李森林. 知识、理解与信任: 个体对人工智能的信任机制[J]. 社会学评论, 2023, 11(3): 59-83. 17 Schr?der A M, GhajargarM. Unboxing the algorithm: designing an understandable algorithmic experience in music recommender systems[C]// Proceedings of the Perspectives on the Evaluation of Recommender Systems Workshop 2021. Aachen: CEUR-WS Team, 2021: Paper 12. 18 Nunes I, Jannach D. A systematic review and taxonomy of explanations in decision support and recommender systems[J]. User Modeling and User-Adapted Interaction, 2017, 27: 393-444. 19 Amershi S, Weld D, Vorvoreanu M, et al. Guidelines for human-AI interaction[C]// Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2019: Paper No.3. 20 IBM. IBM design for AI: explainability[EB/OL]. [2024-05-03]. https://www.ibm.com/design/ai/ethics/explainability. 21 Google. Google AI: responsible AI practices[EB/OL]. [2024-05-03]. https://ai.google/responsibilities/responsible-ai-practices/category=interpretability. 22 Dhanorkar S, Wolf C T, Qian K, et al. Who needs to know what, when?: Broadening the explainable AI (XAI) design space by looking at explanations across the AI lifecycle[C]// Proceedings of the 2021 ACM Designing Interactive Systems Conference. New York: ACM Press, 2021: 1591-1602. 23 Cabour G, Morales-Forero A, Ledoux é, et al. An explanation space to align user studies with the technical development of Explainable AI[J]. AI & Society, 2023, 38(2): 869-887. 24 Wang D D, Yang Q, Abdul A, et al. Designing theory-driven user-centric explainable AI[C]// Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2019: Paper No.601. 25 Endsley M R. Level of automation forms a key aspect of autonomy design[J]. Journal of Cognitive Engineering and Decision Making, 2018, 12(1): 29-34. 26 Jin W N, Fan J Y, Gromala D, et al. EUCA: the end-user-centered explainable AI framework[OL]. (2022-03-01). https://arxiv.org/pdf/2102.02437. 27 Liao Q V, Gruen D, Miller S. Questioning the AI: informing design practices for explainable AI user experiences[C]// Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2020: 1-15. 28 Liao Q V, Pribi? M, Han J, et al. Question-driven design process for explainable AI user experiences[OL]. (2021-09-03). https://arxiv.org/pdf/2104.03483. 29 Schneider J, Handali J. Personalized explanation in machine learning: a conceptualization[C]// Proceedings of the 27th European Conference on Information Systems. Cham: Springer, 2019: 1-17. 30 Wolf C T. Explainability scenarios: towards scenario-based XAI design[C]// Proceedings of the 24th International Conference on Intelligent User Interfaces. New York: ACM Press, 2019: 252-257. 31 李韬奋, 杨水利, 祝明伟. 体验型产品个性化推荐的结构维度实证研究——以图书产品为例[J]. 软科学, 2021, 35(6): 139-144. 32 ?man P, Liikkanen L A. Interacting with context factors in music recommendation and discovery[J]. International Journal of Human–Computer Interaction, 2017, 33(3): 165-179. 33 Jahanbakhsh F, Awadallah A H, Dumais S T, et al. Effects of past interactions on user experience with recommended documents[C]// Proceedings of the 2020 Conference on Human Information Interaction and Retrieval. New York: ACM Press, 2020: 153-162. 34 Kunkel J, Donkers T, Michael L, et al. Let me explain: impact of personal and impersonal explanations on trust in recommender systems[C]// Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2019: Paper No.487. 35 Barbu C M, Carbonell G, Ziegler J. The influence of trust cues on the trustworthiness of online reviews for recommendations[C]// Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. New York: ACM Press, 2019: 1687-1689. 36 李贺, 侯力铁, 祝琳琳. 移动图书馆情景感知信息推荐服务用户接受行为研究[J]. 图书情报工作, 2019, 63(12): 94-104. 37 Yang X. Influence of informational factors on purchase intention in social recommender systems[J]. Online Information Review, 2020, 44(2): 417-431. 38 王伟军, 王阳, 王玉珠, 等. 移动商务用户个性化推荐采纳行为影响因素的实证研究[J]. 系统管理学报, 2017, 26(5): 816-823. 39 吴继飞, 于洪彦, 朱翊敏, 等. 人工智能推荐对消费者采纳意愿的影响[J]. 管理科学, 2020, 33(5): 29-43. 40 陈炳霖, 薛可, 余明阳. 人工智能推荐产品类型对消费者采纳意愿的影响机理研究——基于算法透明度的调节作用[J]. 江西社会科学, 2023, 43(1): 194-205, 208. 41 曹树金, 王雅琪. 图书馆微信公众号图书阅读推广文章采纳行为影响因素[J]. 图书馆论坛, 2021, 41(1): 99-110. 42 于微微, 王心妍, 相静. 个性化推荐系统用户接受意愿和采纳行为影响因素研究[J]. 图书情报导刊, 2018, 3(4): 74-79. 43 梅潇, 查先进, 严亚兰. 智能推荐环境下移动社交媒体用户隐私风险感知影响机理研究[J]. 情报理论与实践, 2024, 47(1): 57-64. 44 王雪, 查先进, 梅潇, 等. 隐私担心视角下移动社交媒体智能推荐用户信息规避行为研究[J]. 情报学报, 2023, 42(5): 598-610. 45 占南, 闫香玉. 电商智能推荐用户信息隐私披露意愿影响机制研究[J]. 现代情报, 2023, 43(10): 35-53. 46 Hoffman R R, Mueller S T, Klein G, et al. Metrics for explainable AI: challenges and prospects[J]. (2019-02-01). https://arxiv.org/pdf/1812.04608. 47 Cramer H, Evers V, Ramlal S, et al. The effects of transparency on trust in and acceptance of a content-based art recommender[J]. User Modeling and User-Adapted Interaction, 2008, 18(5): 455-496. 48 吴世友. 如何运用ATLAS.ti分析定性数据和发掘研究主题[J]. 社会工作, 2017(6): 23-40, 111.