毕达天, 张雪, 孔婧媛, 陈功坤. 基于异质图注意力网络与多特征融合的跨社交媒体用户识别研究[J]. 情报学报, 2024, 43(10): 1213-1226.
Bi Datian, Zhang Xue, Kong Jingyuan, Chen Gongkun. User Identification Across Social Media Based on Heterogeneous Graph Attention Network and Multi-Feature Fusion. 情报学报, 2024, 43(10): 1213-1226.
1 Backlinko Team. Social media usage & growth statistics[EB/OL]. (2024-09-06). https://backlinko.com/social-media-users. 2 Gao H, Wang Y Q, Shao J L, et al. User identity linkage across social networks with the enhancement of knowledge graph and time decay function[J]. Entropy, 2022, 24(11): 1603. 3 张彬, 徐建民, 吴姣. 跨域推荐中的知识融合研究进展[J]. 现代情报, 2023, 43(3): 157-166. 4 刘忠宝, 赵文娟. 融合语义特征和分布特征的跨媒体关联分析方法研究[J]. 情报学报, 2021, 40(5): 471-478. 5 易明, 刘明, 冯翠翠. 融合异质信息网络表示学习的跨领域推荐研究[J]. 情报学报, 2022, 41(4): 337-349. 6 Yang Z G, Lin Z H, Guo L N, et al. MMED: a multi-domain and multi-modality event dataset[J]. Information Processing & Management, 2020, 57(6): 102315. 7 Wang Y Q, Feng C Y, Chen L, et al. User identity linkage across social networks via linked heterogeneous network embedding[J]. World Wide Web, 2019, 22(6): 2611-2632. 8 Diaz J, Poblete B, Bravo-Marquez F. An integrated model for textual social media data with spatio-temporal dimensions[J]. Information Processing & Management, 2020, 57(5): 102219. 9 余艳, 张文, 熊飞宇, 等. 融合知识图谱与神经网络赋能数智化管理决策[J]. 管理科学学报, 2023, 26(5): 231-247. 10 Chung W, Lai V S. A temporal graph framework for intelligence extraction in social media networks[J]. Information & Management, 2023, 60(4): 103773. 11 邢玲, 邓凯凯, 吴红海, 等. 复杂网络视角下跨社交网络用户身份识别研究综述[J]. 电子科技大学学报, 2020, 49(6): 905-917. 12 Nie Y P, Jia Y, Li S D, et al. Identifying users across social networks based on dynamic core interests[J]. Neurocomputing, 2016, 210: 107-115. 13 Zafarani R, Liu H. Connecting corresponding identities across communities[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2009, 3(1): 354-357. 14 Li Y J, Peng Y, Zhang Z, et al. A deep dive into user display names across social networks[J]. Information Sciences, 2018, 447: 186-204. 15 Mu X, Zhu F D, Lim E P, et al. User identity linkage by latent user space modelling[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 1775-1784. 16 齐林峰. 利用实体解析的跨社交媒体同一用户识别[J]. 图书情报工作, 2017, 61(6): 107-114. 17 Li Y J, Ji W L, Gao X, et al. Matching user accounts with spatio-temporal awareness across social networks[J]. Information Sciences, 2021, 570: 1-15. 18 Chen B Y, Chen X L. MAUIL: multilevel attribute embedding for semisupervised user identity linkage[J]. Information Sciences, 2022, 593: 527-545. 19 Li Y J, Zhang Z, Peng Y, et al. Matching user accounts based on user generated content across social networks[J]. Future Generation Computer Systems, 2018, 83: 104-115. 20 Gao M C, Wang R H, Wang L, et al. Cross-domain entity identity association analysis and prediction based on representation learning[J]. International Journal of Distributed Sensor Networks, 2022, 18(11): 15501329221135060. 21 Liu L, Li X, Cheung W K, et al. Structural representation learning for user alignment across social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(9): 1824-1837. 22 Ding X, Zhang H F, Ma C, et al. User identification across multiple social networks based on naive Bayes model[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 4274-4285. 23 Sergey B, Anton K, Seungtaek P, et al. Joint link-attribute user identity resolution in online social networks[C]// Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining, Workshop on Social Network Mining and Analysis. New York: ACM Press, 2012: 12-16. 24 Qu Y T, Ma H H, Wu H H, et al. A multiple salient features-based user identification across social media[J]. Entropy, 2022, 24(4): 495. 25 Chen D L, Su W, Wu P, et al. Joint multimodal sentiment analysis based on information relevance[J]. Information Processing & Management, 2023, 60(2): 103193. 26 何喜军, 吴爽爽, 武玉英, 等. 基于属性异构网络表示学习的专利交易推荐[J]. 情报学报, 2022, 41(11): 1214-1228. 27 Lin M, Wang T, Zhu Y F, et al. A heterogeneous directed graph attention network for inductive text classification using multilevel semantic embeddings[J]. Knowledge-Based Systems, 2024, 295: 111797. 28 Liu J W, Shi C, Yang C, et al. A survey on heterogeneous information network based recommender systems: concepts, methods, applications and resources[J]. AI Open, 2022, 3: 40-57. 29 Hu D, Feng D, Xie Y L. EGC: a novel event-oriented graph clustering framework for social media text[J]. Information Processing & Management, 2022, 59(6): 103059. 30 Wang X, Ji H Y, Shi C, et al. Heterogeneous graph attention network[C]// Proceedings of the World Wide Web Conference. New York: ACM Press, 2019: 2022-2032. 31 Bing R, Yuan G, Zhu M, et al. Heterogeneous graph neural networks analysis: a survey of techniques, evaluations and applications[J]. Artificial Intelligence Review, 2023, 56(8): 8003-8042. 32 Yang X, Deng C, Liu T L, et al. Heterogeneous graph attention network for unsupervised multiple-target domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1992-2003. 33 Zhao Y, Wang L L, Wang C, et al. Multi-granularity heterogeneous graph attention networks for extractive document summarization[J]. Neural Networks, 2022, 155: 340-347. 34 Xu Y J, Fang Y, Huang C, et al. HGHAN: hacker group identification based on heterogeneous graph attention network[J]. Information Sciences, 2022, 612: 848-863. 35 Wang R H, Zhu H L, Wang L, et al. User identity linkage across social networks by heterogeneous graph attention network modeling[J]. Applied Sciences, 2020, 10(16): 5478. 36 Qiao S T, Zhou W, Luo F J, et al. Noise-reducing graph neural network with intent-target co-action for session-based recommendation[J]. Information Processing & Management, 2023, 60(6): 103517. 37 陈周国, 丁建伟, 明杨, 等. 基于异质图卷积注意网络的社交媒体账号分类[J]. 计算机系统应用, 2023, 32(7): 269-275. 38 Celik M, Dokuz A S. Discovering socially similar users in social media datasets based on their socially important locations[J]. Information Processing & Management, 2018, 54(6): 1154-1168. 39 叶佳鑫, 熊回香. 基于标签的跨领域资源个性化推荐研究[J]. 数据分析与知识发现, 2019, 3(2): 21-32. 40 卢菁, 王菊钿, 刘丛. 融合多特征的跨社交网络用户在线识别方法研究[J]. 小型微型计算机系统, 2021, 42(11): 2407-2414. 41 吕鲲, 项旻昊, 靖继鹏. 基于LDA2Vec和DTM模型的颠覆性技术主题识别研究——以能源科技领域为例[J]. 图书情报工作, 2023, 67(12): 89-102. 42 Heimann M, Shen H M, Safavi T, et al. REGAL: representation learning-based graph alignment[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2018: 117-126. 43 Zhang J, Chen B, Wang X M, et al. MEgo2Vec: embedding matched ego networks for user alignment across social networks[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2018: 327-336. 44 陈国青, 张维, 任之光, 等. 面向大数据管理决策研究的全景式PAGE框架[J]. 管理科学学报, 2023, 26(5): 4-22.