冉从敬, 田文芳. 融合SVM-LDA与加权相似度的潜在新兴技术识别研究——以人工智能领域为例[J]. 情报学报, 2024, 43(5): 563-574.
Ran Congjing, Tian Wenfang. Identification of Potential Emerging Technologies by Fusing SVM-LDA and Weighted Similarity: Taking the Field of Artificial Intelligence as an Example. 情报学报, 2024, 43(5): 563-574.
1 Rotolo D, Hicks D, Martin B R. What is an emerging technology?[J]. Research Policy, 2015, 44(10): 1827-1843. 2 Meeting summary[C/OL]// Proceedings of the Global Infrastructure/Standards Working Group, December 17-19, 2002, Atlanta, Georgia. [2024-04-20]. https://docsbay.net/doc/139866/global-infrastructure-standards-working-group. 3 宋凯, 朱彦君. 专利前沿技术主题识别及趋势预测方法——以人工智能领域为例[J]. 情报杂志, 2021, 40(1): 33-38. 4 Christensen C M. The innovator’s dilemma: when new technologies cause great firms to fail[M]. Boston: Harvard Business Review Press, 2013. 5 苏成, 赵志耘, 赵筱媛, 等. 颠覆性技术新阐释: 概念、内涵及特征[J]. 情报学报, 2021, 40(12): 1253-1262. 6 Shen Y C, Chang S H, Lin G T R, et al. A hybrid selection model for emerging technology[J]. Technological Forecasting and Social Change, 2010, 77(1): 151-166. 7 魏国平. 新兴技术管理策略研究——基于新兴技术特征的分类分析[D]. 杭州: 浙江大学, 2006. 8 谈毅, 黄燕丽. 基于过程的新兴技术规划与选择模型研究[J]. 科技管理研究, 2007, 27(8): 5-8. 9 Small H, Boyack K W, Klavans R. Identifying emerging topics in science and technology[J]. Research Policy, 2014, 43(8): 1450-1467. 10 Fujita K, Kajikawa Y, Mori J, et al. Detecting research fronts using different types of weighted citation networks[J]. Journal of Engineering and Technology Management, 2014, 32: 129-146. 11 Porter A L, Garner J, Carley S F, et al. Emergence scoring to identify frontier R&D topics and key players[J]. Technological Forecasting and Social Change, 2019, 146: 628-643. 12 Wang Q. A bibliometric model for identifying emerging research topics[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 290-304. 13 李昌, 杨中楷, 董坤. 基于多维属性动态变化特征的新兴技术识别研究[J]. 情报学报, 2022, 41(5): 463-474. 14 周海炜, 吴成凤. 基于专利SAO结构和多指标评价的新兴技术识别研究——以手机芯片领域为例[J]. 情报杂志, 2022, 41(2): 86-94, 48. 15 高楠, 高嘉骐, 陈洪璞. 新兴技术识别与演化路径分析方法研究——以集成电路领域为例[J]. 情报科学, 2023, 41(3): 127-135, 172. 16 魏明珠, 郑荣, 高志豪, 等. 融合知识图谱和深度神经网络的产业新兴技术预测模型研究[J]. 情报学报, 2022, 41(11): 1134-1148. 17 孔德婧, 董放, 陈子婧, 等. 离群专利视角下的新兴技术预测——基于BERT模型和深度神经网络[J]. 图书情报工作, 2021, 65(17): 131-141. 18 王秀红, 高敏. 基于BERT-LDA的关键技术识别方法及其实证研究——以农业机器人为例[J]. 图书情报工作, 2021, 65(22): 114-125. 19 罗恺, 袁晓东. 基于LDA主题模型与社会网络的专利技术融合趋势研究——以关节机器人为例[J]. 情报杂志, 2021, 40(3): 89-97. 20 苗红, 赵润博, 黄鲁成, 等. 基于LDA-SVM分类算法的技术融合测度研究[J]. 科学学与科学技术管理, 2018, 39(10): 13-29. 21 Kyebambe M N, Cheng G, Huang Y Q, et al. Forecasting emerging technologies: a supervised learning approach through patent analysis[J]. Technological Forecasting and Social Change, 2017, 125: 236-244. 22 刘红光, 马双刚, 刘桂锋. 基于机器学习的专利文本分类算法研究综述[J]. 图书情报研究, 2016, 9(3): 79-86. 23 Zhou Y, Dong F, Liu Y F, et al. A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool[J]. Scientometrics, 2021, 126(2): 969-994. 24 Schiebel E, H?rlesberger M, Roche I, et al. An advanced diffusion model to identify emergent research issues: the case of optoelectronic devices[J]. Scientometrics, 2010, 83(3): 765-781. 25 Lee C, Kwon O, Kim M, et al. Early identification of emerging technologies: a machine learning approach using multiple patent indicators[J]. Technological Forecasting and Social Change, 2018, 127: 291-303. 26 宋博文, 栾春娟, 梁丹妮. 机器学习视域下新兴技术主题识别研究——基于技术特征相似性[J]. 现代情报, 2022, 42(9): 49-57. 27 Yun J, Geum Y. Automated classification of patents: a topic modeling approach[J]. Computers & Industrial Engineering, 2020, 147: 106636. 28 佟昕瑀, 赵蕊洁, 路永和. 基于预训练模型的多标签专利分类研究[J]. 数据分析与知识发现, 2022, 6(2/3): 129-137. 29 龚圣杰. 基于关键词提取与余弦相似度算法的智能广告推荐软件[J]. 信息技术与信息化, 2022(2): 210-213. 30 Huang Z, Zhao W. A semantic matching approach addressing multidimensional representations for web service discovery[J]. Expert Systems with Applications, 2022, 210: 118468.