1.School of Management, Hangzhou Dianzi University, Hangzhou 310018 2.China Academy of Science and Education Evaluation, Hangzhou Dianzi University, Hangzhou 310018
1 陈卫静, 张宇娥, 杜丽. “破五唯”背景下高影响力期刊的多维评价与识别[J]. 中国科技期刊研究, 2021, 32(5): 680-686. 2 Braun T, Gl?nzel W, Schubert A. A Hirsch-type index for journals[J]. Scientometrics, 2006, 69(1): 169-173. 3 万锦堃, 花平寰, 宋媛媛, 等. h指数及其用于学术期刊评价[J]. 评价与管理, 2006, 4(3): 1-7. 4 Roediger H L. The h index in science: a new measure of scholarly contribution[J/OL]. APS Observer, 2006, 19(4). (2006-04-01). https://www.psychologicalscience.org/observer/the-h-index-in-science-a-new-measure-of-scholarly-contribution. 5 赵基明, 邱均平, 黄凯, 等. 一种新的科学计量指标——h指数及其应用述评[J]. 中国科学基金, 2008, 22(1): 23-32. 6 吕娜. 科研人员h指数动态变化趋势分析[J]. 情报理论与实践, 2015, 38(5): 112-115. 7 俞立平. 学术期刊h指数的时间演变规律研究[J]. 情报杂志, 2015, 34(1): 96-99. 8 Hirsch J E. Does the h index have predictive power?[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49): 19193-19198. 9 Acuna D E, Allesina S, Kording K P. Predicting scientific success[J]. Nature, 2012, 489(7415): 201-202. 10 Penner O, Pan R K, Petersen A M, et al. On the predictability of future impact in science[J]. Scientific Reports, 2013, 3(10): Article No. 3052. 11 Dong Y X, Johnson R A, Chawla N V. Can scientific impact be predicted?[J]. IEEE Transactions on Big Data, 2016, 2(1): 18-30. 12 Ayaz S, Masood N, Islam M A. Predicting scientific impact based on h-index[J]. Scientometrics, 2018, 114(3): 993-1010. 13 Ibá?ez A, Larra?aga P, Bielza C. Predicting the h-index with cost-sensitive naive Bayes[C]// Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications. Piscataway: IEEE, 2011: 599-604. 14 Weihs L, Etzioni O. Learning to predict citation-based impact measures[C]// Proceedings of the 2017 ACM/IEEE Joint Conference on Digital Libraries. Piscataway: IEEE, 2017: 1-10. 15 李勤敏, 郭进利. 基于主成分分析和神经网络对作者影响力的评估[J]. 情报学报, 2019, 38(7): 709-715. 16 梁惠敏. h指数的动态建模与预测[D]. 太原: 山西大学, 2020: 20-22. 17 Ye F Y, Rousseau R. The power law model and total career h-index sequences[J]. Journal of Informetrics, 2008, 2(4): 288-297. 18 Ibá?ez A, Bielza C, Larra?aga P. Cost-sensitive selective naive Bayes classifiers for predicting the increase of the h-index for scientific journals[J]. Neurocomputing, 2014, 135: 42-52. 19 Bertoli-Barsotti L, Lando T. The h-index as an almost-exact function of some basic statistics[J]. Scientometrics, 2017, 113(2): 1209-1228. 20 Sims C A. Macroeconomics and reality[J]. Econometrica, 1980, 48(1): 1-48. 21 Malesios C. Measuring the robustness of the journal h-index with respect to publication and citation values: a Bayesian sensitivity analysis[J]. Journal of Informetrics, 2016, 10(3): 719-731. 22 张玉新, 俞立平. 人文社科期刊载文量与影响因子关系比较研究——以美术设计学与情报学期刊为例[J]. 情报杂志, 2019, 38(11): 151-157. 23 Cheong C, Lee H. Forecasting with a parsimonious subset VAR model[J]. Economics Letters, 2014, 125(2): 167-170. 24 张振龙, 孙慧. 新疆区域水资源对产业生态系统与经济增长的动态关联——基于VAR模型[J]. 生态学报, 2017, 37(16): 5273-5284. 25 Huang B N, Hwang M J, Yang C W. Causal relationship between energy consumption and GDP growth revisited: a dynamic panel data approach[J]. Ecological Economics, 2008, 67(1): 41-54. 26 Lyhagen J, Ekberg S, Eidestedt R. Beating the VAR: improving Swedish GDP forecasts using error and intercept corrections[J]. Journal of Forecasting, 2015, 34(5): 354-363. 27 Abrishami A, Aliakbary S. Predicting citation counts based on deep neural network learning techniques[J]. Journal of Informetrics, 2019, 13(2): 485-499. 28 朱光, 刘蕾, 李凤景. 基于LDA和LSTM模型的研究主题关联与预测研究——以隐私研究为例[J]. 现代情报, 2020, 40(8): 38-50. 29 霍朝光, 霍帆帆, 董克. 基于LSTM神经网络的学科主题热度预测模型[J]. 图书情报知识, 2021, 38(2): 25-34. 30 廖含月, 曾剑平, 吴承荣. 一种多模型集成的网络论坛流量预测模型[J]. 计算机工程, 2020, 46(12): 60-66, 72. 31 袁军鹏. 一种两阶段数量组合预测方法及实证[J]. 情报学报, 2014, 33(9): 910-915. 32 刘素兵, 刘海明, 苗佳晶, 等. 图书借阅量的灰色回归组合模型研究[J]. 云南民族大学学报(自然科学版), 2010, 19(3): 170-172. 33 是沁, 李阳, 裴雷, 等. 基于Blending集成学习的专题数据库文本资源分类方法研究与实现[J]. 情报理论与实践, 2022, 45(10): 169-175. 34 聂秀萍, 谢能付, 吴赛赛, 等. 基于机器学习方法的动物遗传与育种学科热点趋势预测[J]. 农业展望, 2020, 16(1): 101-105. 35 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784. 36 郑莉, 段冬梅, 陆凤彬, 等. 我国猪肉消费需求量集成预测——基于ARIMA、VAR和VEC模型的实证[J]. 系统工程理论与实践, 2013, 33(4): 918-925. 37 汪跃春, 胡敏. h指数与发文量、篇均引文量关系模型的验证与评价[J]. 情报杂志, 2011, 30(10): 49-54. 38 应倩, 夏庆民, 戴丽琼, 等. 医学期刊h指数与影响因子、总被引频次的相关性分析[J]. 中国科技期刊研究, 2012, 23(2): 232-234. 39 唐葆君, 申程. 欧洲二氧化碳期货市场有效性分析[J]. 北京理工大学学报(社会科学版), 2012, 14(1): 15-19. 40 陈宏, 马学俊. 中美贸易摩擦的经济影响分析——基于GTAP模型[J]. 扬州大学学报(人文社会科学版), 2019, 23(6): 53-63. 41 Song Y H, Cao J Y. An ARIMA-based study of bibliometric index prediction[J]. Aslib Journal of Information Management, 2021, 74(1): 94-109.