岑咏华, 王曰芬. 学科主题探测与演化分析:多视角述评与展望[J]. 情报学报, 2023, 42(4): 477-494.
Cen Yonghua, Wang Yuefen. Recent Advancements in Detection and Evolutionary Tracking of Scientific Topics: A Multi-perspective Survey and Prospect. 情报学报, 2023, 42(4): 477-494.
1 Chen B T, Tsutsui S, Ding Y, et al. Understanding the topic evolution in a scientific domain: an exploratory study for the field of information retrieval[J]. Journal of Informetrics, 2017, 11(4): 1175-1189. 2 曹树金, 吴育冰, 韦景竹, 等. 知识图谱研究的脉络、流派与趋势——基于SSCI与CSSCI期刊论文的计量与可视化[J]. 中国图书馆学报, 2015, 41(5): 16-34. 3 谭章禄, 彭胜男, 王兆刚. 基于聚类分析的国内文本挖掘热点与趋势研究[J]. 情报学报, 2019, 38(6): 578-585. 4 顾秀丽, 黄颖, 孙蓓蓓, 等. 图书情报领域中的交叉科学研究: 进展与展望[J]. 情报学报, 2020, 39(5): 478-491. 5 周建, 刘炎宝, 刘佳佳. 情感分析研究的知识结构及热点前沿探析[J]. 情报学报, 2020, 39(1): 111-124. 6 Coccia M. The evolution of scientific disciplines in applied sciences: dynamics and empirical properties of experimental physics[J]. Scientometrics, 2020, 124: 451-487. 7 Ma J X, Lund B. The evolution and shift of research topics and methods in library and information science[J]. Journal of the Association for Information Science and Technology, 2021, 72(8): 1059-1074. 8 Li X R, Qiao H, Wang S Y. Exploring evolution and emerging trends in business model study: a co-citation analysis[J]. Scientometrics, 2017, 111(2): 869-887. 9 Hou J H. Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy[J]. Scientometrics, 2017, 110(3): 1437-1452. 10 Pan R K, Petersen A M, Pammolli F, et al. The memory of science: inflation, myopia, and the knowledge network[J]. Journal of Informetrics, 2018, 12(3): 656-678. 11 Tang X L, Li X, Ding Y, et al. The pace of artificial intelligence innovations: speed, talent, and trial-and-error[J]. Journal of Informetrics, 2020, 14(4): 101094. 12 Min C, Ding Y, Li J, et al. Innovation or imitation: the diffusion of citations[J]. Journal of the Association for Information Science and Technology, 2018, 69(10): 1271-1282. 13 Trevisani M, Tuzzi A. Learning the evolution of disciplines from scientific literature: a functional clustering approach to normalized keyword count trajectories[J]. Knowledge-Based Systems, 2018, 146: 129-141. 14 奉国和, 孔泳欣. 基于时间加权关键词词频分析的学科热点研究[J]. 情报学报, 2020, 39(1): 100-110. 15 王康, 陈悦, 苏成, 等. 多维视角下科学主题演化分析框架[J]. 情报学报, 2021, 40(3): 297-307. 16 Lu W, Huang S Z, Yang J Q, et al. Detecting research topic trends by author-defined keyword frequency[J]. Information Processing & Management, 2021, 58(4): 102594. 17 李海林, 邬先利. 基于时间序列聚类的主题发现与演化分析研究[J]. 情报学报, 2019, 38(10): 1041-1050. 18 赵一鸣, 吕鹏辉. 学科知识网络研究(Ⅲ)共词网络的结构、特征与演化[J]. 情报学报, 2014, 33(4): 358-366. 19 许鑫, 陈路遥, 杨佳颖. 数字人文研究领域的知识网络演化——基于题录信息和引文上下文 的关键词共词分析[J]. 情报学报, 2019, 38(3): 322-334. 20 Chumachenko A V, Kreminskyi B G, Mosenkis I L, et al. Dynamics of topic formation and quantitative analysis of hot trends in physical science[J]. Scientometrics, 2020, 125(1): 739-753. 21 吴胜男, 卫慧蓉, 于琦, 等. 结构-内容视角下的学科领域主题演化分析——以肺癌靶向药物领域为例[J]. 信息资源管理学报, 2020, 10(5): 112-121. 22 孙震, 冷伏海. 一种基于知识元共现的ESI研究前沿知识演进分析方法[J]. 情报学报, 2018, 37(11): 1095-1113. 23 刘自强, 王效岳, 白如江. 多维度视角下学科主题演化可视化分析方法研究——以我国图书情报领域大数据研究为例[J]. 中国图书馆学报, 2016, 42(6): 67-84. 24 李海林, 万校基, 林春培. 基于关键词重要性和近邻传播聚类的主题分析研究[J]. 情报学报, 2018, 37(5): 533-542. 25 Wang X G, Wang H Y, Huang H. Evolutionary exploration and comparative analysis of the research topic networks in information disciplines[J]. Scientometrics, 2021, 126(6): 4991-5017. 26 Zhang Q R, Li Y, Liu J S, et al. A dynamic co-word network-related approach on the evolution of China’s urbanization research[J]. Scientometrics, 2017, 111(3): 1623-1642. 27 Duan Y R, Guan Q. Predicting potential knowledge convergence of solar energy: bibliometric analysis based on link prediction model[J]. Scientometrics, 2021, 126(5): 3749-3773. 28 陈伟, 林超然, 李金秋, 等. 基于LDA-HMM的专利技术主题演化趋势分析——以船用柴油机技术为例[J]. 情报学报, 2018, 37(7): 732-741. 29 Figuerola C G, Marco F J G, Pinto M. Mapping the evolution of library and information science (1978-2014) using topic modeling on LISA[J]. Scientometrics, 2017, 112(3): 1507-1535. 30 Zhai Y J, Ding Y, Wang F. Measuring the diffusion of an innovation: a citation analysis[J]. Journal of the Association for Information Science and Technology, 2018, 69(3): 368-379. 31 徐璐璐, 杜建, 叶鹰. 21世纪以来医学信息学研究走向及其健康信息学转向[J]. 情报学报, 2020, 39(7): 777-786. 32 Han X Y. Evolution of research topics in LIS between 1996 and 2019: an analysis based on latent Dirichlet allocation topic model[J]. Scientometrics, 2020, 125(3): 2561-2595. 33 Wu H, Yi H F, Li C. An integrated approach for detecting and quantifying the topic evolutions of patent technology: a case study on graphene field[J]. Scientometrics, 2021, 126(8): 6301-6321. 34 Xie Q, Zhang X Y, Ding Y, et al. Monolingual and multilingual topic analysis using LDA and BERT embeddings[J]. Journal of Informetrics, 2020, 14(3): 101055. 35 丁玉飞, 王曰芬, 刘卫江. 基于主题模型的科技监测方法及应用研究[J]. 情报学报, 2015, 34(8): 854-865. 36 关鹏, 王曰芬. 基于LDA主题模型和生命周期理论的科学文献主题挖掘[J]. 情报学报, 2015, 34(3): 286-299. 37 Li Y T, Chen Y, Wang Q Y. Evolution and diffusion of information literacy topics[J]. Scientometrics, 2021, 126(5): 4195-4224. 38 Jeyaraj A, Zadeh A H. Evolution of information systems research: insights from topic modeling[J]. Information & Management, 2020, 57(4): 103207. 39 Jebari C, Herrera-Viedma E, Cobo M J. The use of citation context to detect the evolution of research topics: a large-scale analysis[J]. Scientometrics, 2021, 126(4): 2971-2989. 40 Ebadi A, Xi P C, Tremblay S, et al. Understanding the temporal evolution of COVID-19 research through machine learning and natural language processing[J]. Scientometrics, 2021, 126(1): 725-739. 41 陈翔, 黄璐, 倪兴兴, 等. 基于动态语义网络分析的主题演化路径识别研究[J]. 情报学报, 2021, 40(5): 500-512. 42 Sung H Y, Yeh H Y, Lin J K, et al. A visualization tool of patent topic evolution using a growing cell structure neural network[J]. Scientometrics, 2017, 111(3): 1267-1285. 43 Zhang Y, Zhang G Q, Zhu D H, et al. Scientific evolutionary pathways: identifying and visualizing relationships for scientific topics[J]. Journal of the Association for Information Science and Technology, 2017, 68(8): 1925-1939. 44 Small H. Update on science mapping: creating large document spaces[J]. Scientometrics, 1997, 38(2): 275-293. 45 王伟, 杨建林. 基于引文网络重叠社团发现的图书情报领域学科主题结构分析[J]. 情报学报, 2020, 39(10): 1021-1033. 46 赵红, 孙倬, 张莎, 等. 基于文献计量分析的社交商务研究脉络与热点演化[J]. 管理学报, 2019, 16(6): 923-931. 47 Liu T, Tang L. Open innovation from the perspective of network embedding: knowledge evolution and development trend[J]. Scientometrics, 2020, 124(2): 1053-1080. 48 Hou J H, Yang X C, Chen C M. Emerging trends and new developments in information science: a document co-citation analysis (2009-2016)[J]. Scientometrics, 2018, 115(2): 869-892. 49 Yan E J, Ding Y. Scholarly network similarities: how bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other[J]. Journal of the American Society for Information Science and Technology, 2012, 63(7): 1313-1326. 50 Klavans R, Boyack K W. Which type of citation analysis generates the most accurate taxonomy of scientific and technical knowledge?[J]. Journal of the Association for Information Science and Technology, 2017, 68(4): 984-998. 51 Boyack K W, Klavans R. Co-citation analysis, bibliographic coupling, and direct citation: which citation approach represents the research front most accurately?[J]. Journal of the American Society for Information Science and Technology, 2010, 61(12): 2389-2404. 52 刘向, 马费成. 科学知识网络的演化与动力——基于科学引证网络的分析[J]. 管理科学学报, 2012, 15(1): 87-94. 53 游鸽, 郭昊, 刘向. 基于专利引文网络的技术演化网络模型与仿真分析[J]. 系统仿真学报, 2021, 33(3): 591-603. 54 段庆锋, 潘小换. 文献相似性对科学引用偏好的影响实证研究[J]. 图书情报工作, 2018, 62(4): 97-106. 55 Mariani M S, Medo M, Zhang Y C. Identification of milestone papers through time-balanced network centrality[J]. Journal of Informetrics, 2016, 10(4): 1207-1223. 56 Massucci F A, Docampo D. Measuring the academic reputation through citation networks via PageRank[J]. Journal of Informetrics, 2019, 13(1): 185-201. 57 Zhou J L, Zeng A, Fan Y, et al. Ranking scientific publications with similarity-preferential mechanism[J]. Scientometrics, 2016, 106(2): 805-816. 58 Kim M, Baek I, Song M. Topic diffusion analysis of a weighted citation network in biomedical literature[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 329-342. 59 Liu Y, Xu S H. A local context-aware LDA model for topic modeling in a document network[J]. Journal of the Association for Information Science and Technology, 2017, 68(6): 1429-1448. 60 Huang Y, Bu Y, Ding Y, et al. Number versus structure: towards citing cascades[J]. Scientometrics, 2018, 117(3): 2177-2193. 61 Min C, Chen Q Y, Yan E J, et al. Citation cascade and the evolution of topic relevance[J]. Journal of the Association for Information Science and Technology, 2021, 72(1): 110-127. 62 Min C, Bu Y, Wu D, et al. Identifying citation patterns of scientific breakthroughs: a perspective of dynamic citation process[J]. Information Processing & Management, 2021, 58(1): 102428. 63 Sattari M, Zamanifar K. A cascade information diffusion based label propagation algorithm for community detection in dynamic social networks[J]. Journal of Computational Science, 2018, 25: 122-133. 64 Hummon N P, Dereian P. Connectivity in a citation network: the development of DNA theory[J]. Social Networks, 1989, 11(1): 39-63. 65 Batagelj V. Efficient algorithms for citation network analysis[OL]. (2003-09-14) [2021-12-20]. https://arxiv.org/abs/cs/0309023. 66 Liu J S, Lu L Y Y. An integrated approach for main path analysis: development of the Hirsch index as an example[J]. Journal of the American Society for Information Science and Technology, 2012, 63(3): 528-542. 67 祝清松, 冷伏海. 基于引文主路径文献共被引的主题演化分析[J]. 情报学报, 2014, 33(5): 498-506. 68 Tu Y N, Hsu S L. Constructing conceptual trajectory maps to trace the development of research fields[J]. Journal of the Association for Information Science and Technology, 2016, 67(8): 2016-2031. 69 Wu F F, Li R Y, Huang L C, et al. Theme evolution analysis of electrochemical energy storage research based on CitNetExplorer[J]. Scientometrics, 2017, 110(1): 113-139. 70 Xu S, Hao L Y, An X, et al. Review on emerging research topics with key-route main path analysis[J]. Scientometrics, 2020, 122(1): 607-624. 71 Yu D J, Pan T X. Tracing knowledge diffusion of TOPSIS: a historical perspective from citation network[J]. Expert Systems with Applications, 2021, 168: 114238. 72 Xiao Y, Lu L Y Y, Liu J S, et al. Knowledge diffusion path analysis of data quality literature: a main path analysis[J]. Journal of Informetrics, 2014, 8(3): 594-605. 73 Lathabai H H, George S, Prabhakaran T, et al. An integrated approach to path analysis for weighted citation networks[J]. Scientometrics, 2018, 117(3): 1871-1904. 74 Yu D J, Sheng L B. Influence difference main path analysis: evidence from DNA and blockchain domain citation networks[J]. Journal of Informetrics, 2021, 15(4): 101186. 75 Bornmann L, Haunschild R. Empirical analysis of recent temporal dynamics of research fields: annual publications in chemistry and related areas as an example[J]. Journal of Informetrics, 2022, 16(2): 101253. 76 Hu K, Qi K L, Yang S L, et al. Identifying the “Ghost City” of domain topics in a keyword semantic space combining citations[J]. Scientometrics, 2018, 114(3): 1141-1157. 77 Xu S, Hao L Y, An X, et al. Emerging research topics detection with multiple machine learning models[J]. Journal of Informetrics, 2019, 13(4): 100983. 78 Ding W Y, Chen C M. Dynamic topic detection and tracking: a comparison of HDP, C-word, and cocitation methods[J]. Journal of the Association for Information Science and Technology, 2014, 65(10): 2084-2097. 79 王楠, 马千淳. 基于文献计量和主题探测方法的学科评价比较研究——以中、美、英、澳四国教育学学科为例[J]. 情报学报, 2020, 39(9): 1001-1010. 80 Zhang X Y, Xie Q, Song M. Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network[J]. Journal of Informetrics, 2021, 15(2): 101140. 81 Choudhury N, Faisal F, Khushi M. Mining temporal evolution of knowledge graphs and genealogical features for literature-based discovery prediction[J]. Journal of Informetrics, 2020, 14(3): 101057. 82 刘自强, 许海云, 罗瑞, 等. 基于主题关联分析的 科技互动模式识别方法研究[J]. 情报学报, 2019, 38(10): 997-1011. 83 Jensen S, Liu X Z, Yu Y Y, et al. Generation of topic evolution trees from heterogeneous bibliographic networks[J]. Journal of Informetrics, 2016, 10(2): 606-621. 84 Cheng Q K, Wang J M, Lu W, et al. Keyword-citation-keyword network: a new perspective of discipline knowledge structure analysis[J]. Scientometrics, 2020, 124(3): 1923-1943. 85 Hu K, Luo Q, Qi K L, et al. Understanding the topic evolution of scientific literatures like an evolving city: using Google word2vec model and spatial autocorrelation analysis[J]. Information Processing & Management, 2019, 56(4): 1185-1203. 86 Kutuzov A, ?vrelid L, Szymanski T, et al. Diachronic word embeddings and semantic shifts: a survey[C]// Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2018: 1384-1397. 87 Mucha P J, Richardson T, Macon K, et al. Community structure in time-dependent, multiscale, and multiplex networks[J]. Science, 2010, 328(5980): 876-878.