Analysis of Patent Technology Topic Evolution Based on Product Life Cycle
Ma Jianhong1, Wang Chenxi1, Yan Lin2, Yao Shuang1
1.School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401 2.Tianjin Gongchuang Technology Development Co., Ltd., Tianjin 300000
马建红, 王晨曦, 闫林, 姚爽. 基于产品生命周期的专利技术主题演化分析[J]. 情报学报, 2022, 41(7): 684-691.
Ma Jianhong, Wang Chenxi, Yan Lin, Yao Shuang. Analysis of Patent Technology Topic Evolution Based on Product Life Cycle. 情报学报, 2022, 41(7): 684-691.
1 陈亮. 面向专利分析的Patent Classification LDA模型[J]. 情报学报, 2016, 35(8): 864-874. 2 秦旭, 杨文忠, 王雪颖, 等. 基于共现关系的多源主题融合模型[J]. 计算机工程与应用, 2020, 56(10): 157-162. 3 刘啸剑, 谢飞, 吴信东. 基于图和LDA主题模型的关键词抽取算法[J]. 情报学报, 2016, 35(6): 664-672. 4 Othman R, Noordin M F, Gusmita R H, et al. SAO extraction on patent discovery system development for Islamic finance and banking[C]// Proceedings of the 2016 6th International Conference on Information and Communication Technology for the Muslim World. IEEE, 2016: 59-63. 5 Blei D M. Probabilistic topic models[J]. Communications of the ACM, 2012, 55(4): 77-84. 6 Wang A, Zhang J J. Topic discovery method based on topic model combined with hierarchical clustering[C]// Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference. IEEE, 2020: 814-818. 7 李海林, 邬先利. 基于时间序列聚类的主题发现与演化分析研究[J]. 情报学报, 2019, 38(10): 1041-1050. 8 程磊, 高茂庭. 结合时间加权和LDA聚类的混合推荐算法[J]. 计算机工程与应用, 2019, 55(11): 160-166. 9 彭云, 万常选, 江腾蛟, 等. 基于语义约束LDA的商品特征和情感词提取[J]. 软件学报, 2017, 28(3): 676-693. 10 陈伟, 林超然, 李金秋, 等. 基于LDA-HMM的专利技术主题演化趋势分析——以船用柴油机技术为例[J]. 情报学报, 2018, 37(7): 732-741. 11 Guo H C, Liang Q L, Li Z Q. An improved AD-LDA topic model based on weighted Gibbs sampling[C]// Proceedings of the 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference. IEEE, 2016: 1978-1982. 12 李湘东, 巴志超, 黄莉. 基于加权隐含狄利克雷分配模型的新闻话题挖掘方法[J]. 计算机应用, 2014, 34(5): 1354-1359. 13 吴菲菲, 陈肖微, 黄鲁成, 等. 基于语义相似度的技术多主题演化路径识别方法研究[J]. 情报杂志, 2018, 37(5): 91-96. 14 Cong H, Tong L H. Grouping of TRIZ Inventive Principles to facilitate automatic patent classification[J]. Expert Systems with Applications, 2008, 34(1): 788-795. 15 乜丽丽. 基于专利分析的技术成熟度预测方法研究与实现[D]. 天津: 河北工业大学, 2011. 16 Prabhudesai K S, Mainsah B O, Collins L M, et al. Augmented latent Dirichlet allocation (LDA) topic model with Gaussian mixture topics[C]// Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing.. IEEE, 2018: 2451-2455.