1 Liu Y, Li K W. A two-sided matching decision method for supply and demand of technological knowledge[J]. Journal of Knowledge Management, 2017, 21(3): 592-606. 2 武玉英, 张博闻, 何喜军, 等. 新能源领域专利转让网络中技术供需主体间交易机会预测[J]. 情报杂志, 2018, 37(5): 79-84, 96. 3 何喜军, 董艳波, 武玉英, 等. 基于ERGM的科技主体间专利技术交易机会实证研究[J]. 中国软科学, 2018(3): 184-192. 4 Luo Y N, Zhao X B, Zhou J T, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information[J]. Nature Communications, 2017, 8: Article No. 573. 5 马荣康, 刘凤朝. 基于专利许可的新能源技术转移网络演变特征研究[J]. 科学学与科学技术管理, 2017, 38(6): 65-76. 6 He X J, Dong Y B, Wu Y Y, et al. Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 514: 443-457. 7 马永红, 张帆. 转移企业结网策略、网络结构与知识水平——基于环境不确定性视角[J]. 中国管理科学, 2017, 25(2): 187-196. 8 Sun Y T, Grimes S. The actors and relations in evolving networks: The determinants of inter-regional technology transaction in China[J]. Technological Forecasting and Social Change, 2017, 125: 125-136. 9 张艺, 陈凯华, 朱桂龙. 产学研合作与后发国家创新主体能力演变——以中国高铁产业为例[J]. 科学学研究, 2018, 36(10): 1896-1913. 10 党兴华, 弓志刚. 多维邻近性对跨区域技术创新合作的影响——基于中国共同专利数据的实证分析[J]. 科学学研究, 2013, 31(10): 1590-1600. 11 Park T Y, Lim H, Ji I. Identifying potential users of technology for technology transfer using patent citation analysis: A case analysis of a Korean research institute[J]. Scientometrics, 2018, 116(3): 1541-1558. 12 李浩君, 张广, 王万良, 等. 基于多维特征差异的个性化学习资源推荐方法[J]. 系统工程理论与实践, 2017, 37(11): 2995-3005. 13 Sun Y Z, Han J W, Zhao P X, et al. RankClus: Integrating clustering with ranking for heterogeneous information network analysis[C]// Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2009: 565-576. 14 Meng Y, Jiang C X, Xu L, et al. User association in heterogeneous networks: A social interaction approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9982-9993. 15 Zhu J X, Zhang J W, Zhang C W, et al. CHRS: Cold start recommendation across multiple heterogeneous information networks[J]. IEEE Access, 2017, 5: 15283-15299. 16 何喜军, 张婷婷, 武玉英, 等. 供需匹配视角下基于语义相似聚类的技术需求识别模型[J]. 系统工程理论与实践, 2019, 39(2): 476-485. 17 翟东升, 柴庆凤, 张杰, 等. 产业价值链视角下潜在专利交易机会挖掘方法研究[J]. 科技进步与对策, 2018, 35(7): 58-67. 18 Arts S, Cassiman B, Gomez J C. Text matching to measure patent similarity[J]. Strategic Management Journal, 2018, 39(1): 62-84. 19 Lee C S, Wang M H, Hsiao Y C, et al. Ontology-based GFML agent for patent technology requirement evaluation and recommendation[J]. Soft Computing, 2019, 23(2): 537-556. 20 Ji X, Gu X J, Dai F, et al. Patent collaborative filtering recommendation approach based on patent similarity[C]// Proceedings of the Eighth International Conference on Fuzzy Systems and Knowledge Discovery. New York: IEEE, 2011: 1699-1703. 21 Trappey A J C, Trappey C V, Wu C Y, et al. Intelligent patent recommendation system for innovative design collaboration[J]. Journal of Network and Computer Applications, 2013, 36(6): 1441-1450. 22 Zhang Y, Shang L N, Huang L, et al. A hybrid similarity measure method for patent portfolio analysis[J]. Journal of Informetrics, 2016, 10(4): 1108-1130. 23 Wang Y D, Pan X, Ning L T, et al. Technology exchange patterns in China: An analysis of regional data[J]. The Journal of Technology Transfer, 2015, 40(2): 252-272. 24 Wang Q, Du W, Ma J, et al. Recommendation mechanism for patent trading empowered by heterogeneous information networks[J]. International Journal of Electronic Commerce, 2019, 23(2): 147-178. 25 Guo G B, Zhu F D, Qu S L, et al. PCCF: Periodic and continual temporal co-factorization for recommender systems[J]. Information Sciences. 2018, 436-437: 56-73. 26 祝婷, 秦春秀, 李祖海. 基于用户分类的协同过滤个性化推荐方法研究[J]. 现代图书情报技术, 2015(6): 13-19. 27 夏立新, 杨金庆, 程秀峰. 移动环境下融合情境信息的群组推荐模型研究——基于用户APP行为数据的实证分析[J]. 情报学报, 2018, 37(4): 384-393. 28 邓晓懿, 金淳, 韩庆平, 等. 基于情境聚类和用户评级的协同过滤推荐模型[J]. 系统工程理论与实践, 2013, 33(11): 2945-2953. 29 翟丽丽, 邢海龙, 张树臣. 基于情境聚类优化的移动电子商务协同过滤推荐研究[J]. 情报理论与实践, 2016, 39(8): 106-110. 30 毕强, 刘健. 基于领域本体的数字文献资源聚合及服务推荐方法研究[J]. 情报学报, 2017, 36(5): 452-460. 31 熊回香, 杨雪萍. 社会化标注系统中的个性化信息推荐研究[J]. 情报学报, 2016, 35(5): 549-560. 32 Jiang L, Yang C C, User recommendation in healthcare social media by assessing user similarity in heterogeneous network[J]. Artificial Intelligence in Medicine, 2017, 81: 63-77. 33 曹玖新, 董羿, 杨鹏伟, 等. LBSN中基于元路径的兴趣点推荐[J]. 计算机学报, 2016, 39(4): 675-684. 34 Shi C, Liu J, Zhuang F Z, et al. Integrating heterogeneous information via flexible regularization framework for recommendation[J]. Knowledge and Information Systems, 2016, 49(3): 835-859. 35 Sun Y Z, Han J W, Yan X F, et al. PathSim: Meta path-based top-k similarity search in heterogeneous information networks[J]. Proceedings of the VLDB Endowment, 2011, 4(11): 992-1003. 36 Hu L, Wang Y, Xie Z Z, et al. Semantic preference-based personalized recommendation on heterogeneous information network[J]. IEEE Access, 2017, 5: 19773-19781. 37 Shi C, Zhang Z Q, Luo P, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM Press, 2015: 453-462. 38 Nandanwar S, Moroney A, Murty M N. Fusing diversity in recommendations in heterogeneous information networks[C]// Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2018: 414-422. 39 Gupta M, Kuma rP, Bhasker B, et al. Personalized item ranking from implicit user feedback: A heterogeneous information network approach[J]. Pacific Asia Journal of the Association for Information Systems, 2017, 9(2): 23-42. 40 Huang Z P, Zheng Y D, Cheng R, et al. Meta structure: Computing relevance in large heterogeneous information networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 1595-1604. 41 Huang Z P, Mamoulis N. Heterogeneous information network embedding for meta path based proximity[OL]. https://arxiv.org/pdf/1701.05291.pdf. 42 Zhao H, Yao Q M, Li J D, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2017: 635-644. 43 Li C Z, Wang S Z, Yang D J, et al. PPNE: Property preserving network embedding[C]// Proceedings of the 22nd International Conference on Database Systems for Advanced Applications. Cham: Springer, 2017: 163-179. 44 Chang S Y, Han W, Tang J L, et al. Heterogeneous network embedding via deep architectures[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2015: 119-128. 45 张晓娟. 利用嵌入方法实现个性化查询重构[J]. 情报学报, 2018, 37(6): 621-630. 46 Wang D X, Cui P, Zhu W W. Structural deep network embedding [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 1225-1234. 47 Yuan W W, He K Y, Han G J, et.al. User behavior prediction via heterogeneous information preserving network embedding[J]. Future Generation Computer Systems, 2019, 92: 52-58. 48 Hosseini A, Chen T, Wu W J, et al. HeteroMed: Heterogeneous information network for medical diagnosis[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2018: 763-772. 49 Chen T, Sun Y Z. Task-guided and path-augmented heterogeneous network embedding for author identification[C]// Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2017: 295-304. 50 Cai H Y, Zheng V W, Chang K C C. A comprehensive survey of graph embedding: Problems, techniques, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637. 51 Huang E W, Wang S, Li B X, et al. HEMnet: Integration of electronic medical records with molecular interaction networks and domain knowledge for survival analysis[C]// Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. New York: ACM Press, 2017: 378-387. 52 Bottazzi L, Peri G. Innovation and spillovers in regions: Evidence from European patent data[J]. European Economic Review, 2003, 47(4): 687-710.