1 叶春蕾, 冷伏海. 基于共词分析的学科主题演化方法改进研究[J]. 情报理论与实践, 2012, 35(3): 79-82. 2 焦红, 李秀霞. 基于研究主题的学科领域知识演化路径识别——以图书情报领域粗糙集为例[J]. 情报理论与实践, 2019, 42(3): 101-106. 3 曲佳彬, 欧石燕. 基于主题过滤与主题关联的学科主题演化分析[J]. 数据分析与知识发现, 2018, 2(1): 64-75. 4 Wang X G, Cheng Q K, Lu W. Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks[J]. Scientometrics, 2014, 101(2): 1253-1271. 5 宫小翠, 安新颖. 基于LDA模型的医学领域主题分裂融合探测[J]. 图书情报工作, 2017, 61(18): 76-83. 6 巴志超, 杨子江, 朱世伟, 等. 基于关键词语义网络的领域主题演化分析方法研究[J]. 情报理论与实践, 2016, 39(3): 67-72. 7 黄璐, 朱一鹤, 张嶷. 基于加权网络链路预测的新兴技术主题识别研究[J]. 情报学报, 2019, 38(4): 335-341. 8 Katsurai M, Ono S. TrendNets: mapping emerging research trends from dynamic co-word networks via sparse representation[J]. Scientometrics, 2019, 121(3): 1583-1598. 9 侯剑华, 吕东博, 王鹏. 从硕士学位论文看我国科学技术哲学研究的转向——基于对硕士学位论文的计量分析[J]. 黑龙江高教研究, 2014, 32(2): 7-10. 10 Ding W Y, Chen C M. Dynamic topic detection and tracking: a comparison of HDP, C-word, and cocitation methods[J]. Journal of the Association for Information Science and Technology, 2014, 65(10): 2084-2097. 11 Song M, Heo G E, Kim S Y. Analyzing topic evolution in bioinformatics: investigation of dynamics of the field with conference data in DBLP[J]. Scientometrics, 2014, 101(1): 397-428. 12 王曰芬, 傅柱, 陈必坤. 基于LDA主题模型的科学文献主题识别:全局和学科两个视角的对比分析[J]. 情报理论与实践, 2016, 39(7): 121-126, 101. 13 张嶷, 汪雪锋, 朱东华, 等. 主题词簇方法研究[J]. 科学学研究, 2013, 31(11): 1615-1622. 14 Porter A, Zhang Y, Sakurai S. Text clumping for technical intelligence[M]// Theory and Applications for Advanced Text Mining. Croatia: InTech Publishing, 2012. 15 Wallace M L, Gingras Y, Duhon R. A new approach for detecting scientific specialties from raw cocitation networks[J]. Journal of the American Society for Information Science and Technology, 2009, 60(2): 240-246. 16 Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): P10008. 17 曾庆田, 胡晓慧, 李超. 融合主题词嵌入和网络结构分析的主题关键词提取方法[J]. 数据分析与知识发现, 2019, 3(7): 52-60. 18 Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[OL]. (2013-09-07). https://arxiv.org/pdf/1301.3781.pdf. 19 陈虹枢. 基于主题模型的专利文本挖掘方法及应用研究[D]. 北京: 北京理工大学, 2015. 20 王飞, 谭新. 一种基于Word2Vec的训练效果优化策略研究[J]. 计算机应用与软件, 2018, 35(1): 97-102, 174. 21 Newman M E J. Communities, modules and large-scale structure in networks[J]. Nature Physics, 2012, 8(1): 25-31. 22 Guimerà R, Sales-Pardo M, Amaral L A N. Classes of complex networks defined by role-to-role connectivity profiles[J]. Nature Physics, 2007, 3(1): 63-69. 23 Palla G, Barabási A L, Vicsek T. Quantifying social group evolution[J]. Nature, 2007, 446(7136): 664-667. 24 林江豪, 周咏梅, 阳爱民, 等. 结合词向量和聚类算法的新闻评论话题演进分析[J]. 计算机工程与科学, 2016, 38(11): 2368-2374. 25 Hou J H, Yang X C, Chen C M. Emerging trends and new developments in information science: a document co-citation analysis (2009-2016)[J]. Scientometrics, 2018, 115(2): 869-892. 26 Wang Y, Liu Z, Sun M. Incorporating linguistic knowledge for learning distributed word representations[J]. PLoS One, 2015, 10(4): e0118437. 27 Schwartz R, Reichart R, Rappoport A. Symmetric pattern based word embeddings for improved word similarity prediction[C]// Proceedings of the Nineteenth Conference on Computational Natural Language Learning. Stroudsburg: Association for Computational Linguistics, 2015: 258-267. 28 Vaio G D, Weisdorf J L. Ranking economic history journals: a citation-based impact-adjusted analysis[J]. Cliometrica, 2009, 4(1): 1-17. 29 Kralj J, Valmarska A, Robnik-?ikonja M, et al. Mining text enriched heterogeneous citation networks[C]// Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer International Publishing, 2015: 672-683. 30 Sud P, Thelwall M. Evaluating altmetrics[J]. Scientometrics, 2014, 98(2): 1131-1143.