|
|
Study on Classification of Patents Collaborative Filtering Oriented to TRIZ |
Hu Xuegang1, Yang Hengyu1,2, Lin Yaojin3, Bao Yanwei1 |
1. School of Computer and Information, Hefei University of Technology, Hefei 230009; 2. Anhui Institute of Scientific and Technical Information, Hefei 230011; 3. School of Computer Science, Minnan Normal University, Zhangzhou 363000 |
|
|
Abstract With increasing applications and attention to patents, the study of patent classification has attracted wide attention. As an important technology of recommendation systems, collaborative filtering technology is widely used in the field of Internet data mining, and has the characteristics of simplicity and efficiency. In this paper, a patent TRIZ classification method based on collaborative filtering (TRIZ-CF) is proposed based on the idea that patent inventors use similar methods to solve similar problems. First, the method quantifies the patent text. Second, a patent scoring matrix is constructed. Finally, unclassified patents are classified by the calculated ranking scores. Experimental results show that the proposed method can improve classification accuracy compared to SVM (Support Vector Machine) and efficiency and can be effectively applied to TRIZ-CF.
|
Received: 09 November 2017
|
|
|
|
[1] 黄晓斌, 梁辰. 专利技术的关联网络分析——以4 G通信技术领域为例[J]. 情报学报, 2015, 34(1): 92-104. [2] 胡阿沛, 张静, 雷孝平, 等. 基于文本挖掘的专利技术主题分析研究综述[J]. 情报杂志, 2013, 32(12): 88-92, 61. [3] Falasco L.Bases of the United States Patent c1assfication[J]. World Patent Information, 2002, 24(1): 31-33. [4] Lai K K, Wu S J.Using the patent co-citation approach to establish a new patent classification system[J]. Information Processing and Management, 2005, 4l(2): 313-330. [5] Guo W Q, Dai T, Wen G H.A patent classification method based on domain knowledge[J]. Computer Engineering, 2005, 34(23): 52-54. [6] 黄斌, 黄鲁成, 吴菲菲, 等. 基于专利共类的技术关联特征识别[J]. 情报杂志, 2015, 34(1): 44-48. [7] Loh H T, He C, Shen L.Automatic classification of patent documents for TRIZ users[J]. World Patent Information, 2006, 28(1): 6-13. [8] He C, Loh H T.Grouping of TRIZ Inventive principles to facilitate automatic patent classmcation[J]. Expert Systems with Applications, 2008, 34(1): 788-795. [9] He C, Loh H T.Pattern-oriented associative rule-based patent classification[J]. Expert Systems with Applications, 2010, 37(3): 2395-2404. [10] 江屏, 王川, 孙建广, 等. IPC聚类分析与TRIZ相结合的专利群规避设计方法与应用[J]. 机械工程学报, 2015, 51(7): 144-154. [11] 袁力, 陈阳, 赵勇. 面向TRIZ理论使用者的多标签专利分类[J]. 计算机科学, 2013, 40(11A): 255-258, 266. [12] 翟继强, 王克奇. 依据TRIZ发明原理的中文专利自动分类[J]. 哈尔滨理工大学学报, 2013, 18(3): 1-5. [13] 胡正银, 方曙, 文奕, 等. 面向TRIZ的专利自动分类研究[J]. 现代图书情报技术, 2015, 31(1): 66-74. [14] 刘燕华等. 创新方法教程(初级)[M]. 北京: 高等教育出版社, 2012: 308-318. [15] 胡正银, 方曙. 专利文本技术挖掘研究进展综述[J]. 现代图书情报技术, 2014, 30(6): 62-70. [16] Cortes C, Vapnik V.Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. [17] McPherson M, Smith-Lovin L, Cook J M. Birds of a feather: Homophily in social networks[J]. Annual Review of Sociology, 2001, 27: 415-444. [18] 吴信东, 李毅, 李磊. 在线社交网络影响力分析[J]. 计算机学报, 2014, 37(4): 735-752. [19] 林耀进, 胡学钢, 李慧宗. 基于用户群体影响的协同过滤推荐算法[J]. 情报学报, 2013, 32(3): 299-305. [20] Liu H F, Hu Z, Mian A, et al.A new user similarity model to improve the accuracy of collaborative filtering[J]. Knowledge- Based Systems, 2014, 56: 156-166. [21] 杨恒宇, 李慧宗, 林耀进, 等. 协同过滤中有影响力近邻的选择[J]. 北京邮电大学学报, 2016, 39(1): 29-34. [22] Salton G, Wong A, Yang C S.A vector space model for automatic indexing[J]. Communications of the ACM, 1975, 18(11): 613-620. [23] SVMlight Support Vector Machine[EB/OL]. [2008-08-04]. http:// osmot.cs.cornell.edu/svm_light/current/svm_light_windows32.zip. |
|
|
|