|
|
Mapping the Subject Structure of Library and Information Science through Overlapping Community Detection in Citation Network |
Wang Wei1,2, Yang Jianlin1,2 |
1.School of Information Management, Nanjing University, Nanjing 210023 2.Jiangsu Key Laboratory of Data Engineering and Knowledge Service, Nanjing 210023 |
|
|
Abstract Mapping the subject structure can promote theoretical and methodological research—further accelerating a discipline??s innovation and development. This paper proposes to visualize subject structure based on an overlapping community detection algorithm, which measures the knowledge flow between topics through directed h-degree and reveals overlapping node roles through the analysis of topological structure and content. We apply this method to the field of library and information science. The results show that the method can dig out fine-grained research topics. These topics, which include theoretical research in information science and library science, knowledge management, citation analysis, smart library, and library subject service, are closely related to other topics. Overlapping nodes are divided into core nodes, which have a higher betweenness centrality and degree, and edge nodes, which have a lower betweenness centrality and degree. The boundary between information science and library science is fuzzy, and the research subject is homogeneous and differentiated. A deep discipline integration, which must be based on facilitating the theoretical and practical research of the two disciplines, will accelerate the development of library and information science.
|
Received: 09 August 2019
|
|
|
|
1 卫军朝, 蔚海燕. 科学结构及演化分析方法研究综述[J]. 图书与情报, 2011(4): 48-52. 2 Figuerola C G, García Marco F J, Pinto M. Mapping the evolution of library and information science (1978-2014) using topic modeling on LISA[J]. Scientometrics, 2017, 112(3): 1507-1535. 3 王芳, 赵洪, 张维冲. 我国情报学科理论研究形态及学术影响力的全数据分析[J]. 图书情报知识, 2018(6): 15-28. 4 情报学与情报工作发展南京共识[J]. 情报学报, 2017, 36(11): 1209-1210. 5 罗双玲, 张文琪, 夏昊翔. 基于半积累引文网络社区发现的学科领域主题演化分析——以“合作演化” 领域为例[J]. 情报学报, 2017, 36(1): 100-110. 6 Palla G, Derényi I, Farkas I,et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043): 814-818. 7 Hou J H, Yang X C, Chen C M. Emerging trends and new developments in information science: A document co-citation analysis (2009-2016)[J]. Scientometrics, 2018, 115(2): 869-892. 8 Small H. Update on science mapping: Creating large document spaces[J]. Scientometrics, 1997, 38(2): 275-293. 9 Garfield E. Historiographic mapping of knowledge domains literature[J]. Journal of Information Science, 2004, 30(2): 119-145. 10 Small H, Sweeney E, Greenlee E. Clustering the science citation index using co-citations. II. Mapping science[J]. Scientometrics, 1985, 8(5-6): 321-340. 11 Small H, Sweeney E. Clustering the science citation index? using co-citations[J]. Scientometrics, 1985, 7(3-6): 391-409. 12 Kessler M M. Bibliographic coupling between scientific papers[J]. American Documentation, 1963, 14(1): 10-25. 13 Kajikawa Y, Ohno J, Takeda Y,et al. Creating an academic landscape of sustainability science: An analysis of the citation network[J]. Sustainability Science, 2007, 2(2): 221-231. 14 Chen C M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. 15 van Eck N J, Waltman L. CitNetExplorer: A new software tool for analyzing and visualizing citation networks[J]. Journal of Informetrics, 2014, 8(4): 802-823. 16 马费成, 陈潇俊, 刘向. 基于科学知识图谱分析的知识演化研究——以生物医学为例[J]. 情报科学, 2012, 30(1): 1-7, 15. 17 Shibata N, Kajikawa Y, Takeda Y,et al. Comparative study on methods of detecting research fronts using different types of citation[J]. Journal of the American Society for Information Science and Technology, 2009, 60(3): 571-580. 18 Boyack K W, Klavans R. Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?[J]. Journal of the American Society for Information Science and Technology, 2010, 61(12): 2389-2404. 19 Chakraborty T, Chakraborty A. OverCite: Finding overlapping communities in citation network[C]// Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: ACM Press, 2014: 1124-1131. 20 Gopalan P K, Blei D M. Efficient discovery of overlapping communities in massive networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36): 14534-14539. 21 Lancichinetti A, Fortunato S, Kertész J. Detecting the overlapping and hierarchical community structure in complex networks[J]. New Journal of Physics, 2009, 11(3): 033015. 22 Palla G, Barabási A L, Vicsek T. Quantifying social group evolution[J]. Nature, 2007, 446(7136): 664-667. 23 刘非凡, 李长玲, 魏绪秋. 我国情报学学科主题结构分析[J]. 情报理论与实践, 2015, 38(2): 121-126. 24 Xie J R, Kelley S, Szymanski B K. Overlapping community detection in networks: The state of the art and comparative study[J]. ACM Computing Surveys, 2013, 45(4): 1-35. 25 Harenberg S, Bello G, Gjeltema L,et al. Community detection in large-scale networks: A survey and empirical evaluation[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2014, 6(6): 426-439. 26 肖雪, 王钊伟, 陈云伟, 等. 基于样本加权的引文网络的社团划分[J]. 图书情报工作, 2016, 60(20): 86-93. 27 Yin J H, Wang J Y. A Dirichlet multinomial mixture model-based approach for short text clustering[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2014: 233-242. 28 Zuo Y, Zhao J C, Xu K. Word network topic model: A simple but general solution for short and imbalanced texts[J]. Knowledge and Information Systems, 2016, 48(2): 379-398. 29 Qiang J P, Qian Z Y, Li Y, et al. Short text topic modeling techniques, applications, and performance: A survey[OL]. https://arxiv.org/pdf/1904.07695.pdf. 30 Xie J R, Szymanski B K, Liu X M. SLPA: Uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process[C]// Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops. IEEE, 2011: 344-349. 31 Raghavan U N, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 76(3 Pt 2): 036106. 32 Nicosia V, Mangioni G, Carchiolo V, et al. Extending the definition of modularity to directed graphs with overlapping communities[J]. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009(3): P03024. 33 Zhao S X, Ye F Y. Exploring the directed h-degree in directed weighted networks[J]. Journal of Informetrics, 2012, 6(4): 619-630. 34 Allen B, Reser D. Content analysis in library and information science research[J]. Library & Information Science Research, 1990, 12(3): 251-262. 35 Lee J W, Yang K D. A bibliometric study of library and information science research in Korea[J]. Journal of the Korean Society for Library and Information Science, 2011, 45(4): 53-76. 36 冷伏海, 于微微. 从2002—2011年ARIST及《情报学进展》载文内容看情报学研究动态与发展[J]. 情报学报, 2013, 32(10): 1012-1025. 37 张雪梅. 我国图书馆学研究的主题分类表构建及主题分布规律研究[D]. 长春: 吉林大学, 2018. 38 赵星, 谭旻, 余小萍, 等. 我国文科领域知识扩散之引文网络探析[J]. 中国图书馆学报, 2012, 38(5): 59-67. 39 李健, 李洋. 我国图书馆学与情报学发展的同归与分野[J]. 情报杂志, 2017, 36(5): 9-13, 89. 40 苏新宁. 大数据时代情报学学科崛起之思考[J]. 情报学报, 2018, 37(5): 451-459. 41 国家图书馆《中国图书馆分类法》编辑委员会. 中国分类主题词表[M]. 第2版. 北京: 北京图书馆出版社, 2005. 42 叶继元. 图书馆学、情报学与信息科学、信息管理学等学科的关系问题[J]. 中国图书馆学报, 2004, 30(3): 11-17, 23. 43 苏新宁. 提升图书情报学学科地位的思考——基于CSSCI的实证分析[J]. 中国图书馆学报, 2010, 36(4): 47-53. |
|
|
|