摘要突发监测,是通过观察增长率骤然上升的突发词的发展变化,来探测学科前沿的方法。SemRep可以根据UMLS(unified medical language system)提取自然语言语义关系。本文通过SemRep结合突发监测算法,揭示某领域研究现状及发展趋势,以疾病药物治疗为例,分析了SARS药物治疗领域的研究重点和热点。在新型冠状病毒肺炎疫情背景下,为新型冠状病毒(SARS-CoV-2)防控药物的选择与开发提供有力线索。在SARS药物治疗研究文献集合中,利用SemRep和SemRep语义结果处理系统,根据UMLS语义关系,提取存在治疗关系的药物术语概念集合,合并去重后得到Ribavirin(利巴韦林)等有效概念51个,这些药物是SARS治疗常规药物,主要用于疫情发生时的临床急救。根据Kleinberg突发监测算法,计算药物概念的突发权重指数,将概念按突发权重指数高低排序后,得到SARS治疗潜力药物,这些药物大多是在疫情结束后进行的抗病毒实验室研究。SemRep结合突发监测的方法不仅适用于疾病药物治疗领域,也用于各个学科研究热点的挖掘。
徐爽, 许丹, 韩爽, 杨颖. SemRep和突发监测算法在文献计量分析中的应用——以疾病药物治疗发展趋势为例[J]. 情报学报, 2021, 40(7): 745-755.
Xu Shuang, Xu Dan, Han Shuang, Yang Ying. Application of SemRep and Burst Detection Algorithm in Bibliometric Analysis—A Case Study on the Development Trend of Drug Therapy. 情报学报, 2021, 40(7): 745-755.
1 Kleinberg J. Bursty and hierarchical structure in streams[C]// Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2002: 91-101. 2 徐爽. 基于突发监测的全身炎症反应综合征治疗药物研究趋势分析[D]. 沈阳: 中国医科大学, 2010. 3 王梦婷. 基于突变检测的主题突变分析研究[J]. 情报科学, 2016, 34(12): 36-39. 4 王孝宁, 崔雷, 刘刚, 等. 突发监测算法用于共词聚类分析的尝试[J]. 图书情报工作, 2009, 53(12): 104-107, 120. 5 张正宇. 医学院在校生对HPV知信行及健康信息精准服务研究[D]. 重庆: 重庆医科大学, 2019. 6 Kleinberg J. Bursty and hierarchical structure in streams[J]. Data Mining and Knowledge Discovery, 2003, 7: 373-397. 7 胡静, 李璐. 基于词频突变的我国阅读推广研究前沿挖掘[J]. 情报科学, 2017, 35(10): 75-78. 8 郑乐丹. 基于突变检测的学科领域新兴研究趋势探测分析[J]. 情报杂志, 2012, 31(9): 50-53. 9 Kontostathis A, Galitsky L M, Pottenger W M, et al. A survey of emerging trend detection in textual data mining[J]. Survey of Text Mining, 2004, 13: 185-224. 10 Mane K K, B?rner K. Mapping topics and topic bursts in PNAS[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 5287-5290. 11 Ke W M, B?rner K, Viswanath L. Major information visualization authors, papers and topics in the ACM library[C]// Proceedings of the IEEE Symposium on Information Visualization. IEEE, 2004: r1. 12 Chen C M. Searching for intellectual turning points: progressive knowledge domain visualization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(Suppl 1): 5303-5310. 13 Chen C M. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. 14 杨选辉, 杜心雨, 蔡志强. 基于突变检测与共词分析的深阅读新兴趋势分析[J]. 图书馆建设, 2018(5): 48-53. 15 杨选辉, 蔡志强. 基于突变检测与共词分析的关联数据新兴趋势探测[J]. 情报科学, 2018, 36(11): 164-168. 16 尚晓倩. 基于突变检测的国际Altmetrics研究热点和趋势分析[J]. 情报科学, 2017, 35(5): 51-56. 17 郑乐丹. 基于突发检测的我国数字图书馆研究前沿及其演进分析[J]. 图书馆论坛, 2013, 33(1): 47-51. 18 Zhou A Y, Qin S K, Qian W N. Adaptively detecting aggregation bursts in data streams[C]// Proceedings of the International Conference on Database Systems for Advanced Applications. Heidelberg: Springer, 2005, 3453: 435-446. 19 Chen T T, Wang Y, Fang B X, et al. Detecting lasting and abrupt bursts in data streams using two-layered wavelet tree[C]// Proceedings of the Advanced International Conference on Telecommunications and International Conference on Internet and Web Applications and Services. IEEE, 2006: 30. 20 李勇, 安新颖, 赵迎光. 基于动态时间窗口的突发监测研究[J]. 医学信息学杂志, 2014, 35(6): 44-48. 21 李秀霞, 胡凡刚, 袁林, 等. 基于加权中值相关和半阈值策略的突发关键词监测[J]. 情报理论与实践, 2015, 38(3): 53-58. 22 Fung G P C, Yu H X, Yu P S, et al. Parameter free bursty events detection in text streams[C]// Proceedings of the 31st International Conference on Very Large Data Bases. VLDB Endowment, 2005: 181-192. 23 He Q, Chang K Y, Lim E P. Analyzing feature trajectories for event detection[C]// Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2007: 207-214. 24 Lappas T, Arai B, Platakis M, et al. On burstiness-aware search for document sequences[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2009: 477-486. 25 张晗, 赵玉虹. 基于语义图的医学多文档摘要提取模型构建[J]. 图书情报工作, 2017, 61(8): 112-119. 26 高红梅, 魏西峰, 王崧华, 等. 语义词库关联的藏文Web语义检索系统研究与实现[J]. 西藏大学学报(自然科学版), 2015, 30(2): 90-95. 27 逯万辉, 马建霞, 赵迎光. 爆发词识别与主题探测技术研究综述[J]. 情报理论与实践, 2012, 35(6): 125-128. 28 姬东鸿. 语义分析若干前沿问题[J]. 长江学术, 2020(2): 99-114. 29 刘佳宇, 韦尧, 周丹丹. 基于情感语义分析的舆情监测技术探讨[C]// 中国新闻技术工作者联合会2018年学术年会论文集(学术论文篇). 北京: 中国新闻技术工作者联合会, 2018: 206-210. 30 王怀波, 李冀红, 孙洪涛, 等. 基于模型的教育大数据应用框架设计[J]. 现代教育技术, 2020, 30(6): 5-12. 31 闫雷, 刘春鹤, 关晶, 等. SemRep处理结果统计挖掘系统的开发[J]. 医学信息学杂志, 2013, 34(4): 31-34. 32 宋文. 统一医学语言系统及其应用[J]. 情报理论与实践, 2005, 28(5): 518-522. 33 张晗, 赵玉虹. 医学文献语义共词知识网的构建: 方法与实证[J]. 图书情报工作, 2016, 60(11): 135-142. 34 宋鑫智, 崔雷. 利用SemRep语义网及MeSH语义网表达单篇论文知识[J]. 中华医学图书情报杂志, 2019, 28(1): 1-7. 35 Rindflesch T C, Fiszman M. The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text[J]. Journal of Biomedical Informatics, 2003, 36(6): 462-477. 36 庞弘燊. 基于科技论文多特征项共现突发强度分析方法的算法实现与可视化图谱研究[J]. 图书情报工作, 2015, 59(24): 115-122. 37 魏晓俊. 基于科技文献中词语的科技发展监测方法研究[J]. 情报杂志, 2007(3): 35-38. 38 童元元, 何巍, 杨策, 等. 国际植物药研究科技论文的计量分析[J]. 中华医学图书情报杂志, 2012(7): 55-60. 39 Fiszman M, Rindflesch T C, Kilicoglu H. Integrating a hypernymic proposition interpreter into a semantic processor for biomedical texts[J]. AMIA Annual Symposium Proceedings Archive, 2003, 2003: 239-243. 40 北京最后两名病人今出院, 中国医院再无非典患者[EB/OL]. (2003-08-16) [2020-02-15]. http://www.chinanews.com/n/2003-08-16/26/335859.html. 41 Aronson A R. MetaMap: mapping text to the UMLS metathesaurus[EB/OL]. (2006-07-14) [2020-02-15]. http://skr.nlm.nih.gov/papers/references/metamap06.pdf. 42 丁云轩, 闫雷. 数据挖掘软件SemRepr的评价[J]. 中华医学图书情报杂志, 2008, 17(6): 71-75. 43 Tai D Y H. Pharmacologic treatment of SARS: current knowledge and recommendations[J]. Annals of the Academy of Medicine, Singapore, 2007, 36(6): 438-443. 44 Kawana A. Clinical and epidemiological review of SARS[J]. Annals of the Academy of Medicine, Singapore, 2007, 36(6): 438-443. 45 Lau E M C, Chan F W K, Hui D S C, et al. Reduced bone mineral density in male severe acute respiratory syndrome (SARS) patients in Hong Kong[J]. Bone, 2005, 37(3): 420-424. 46 Zhao F C, Guo K J, Li Z R. Osteonecrosis of the femoral head in SARS patients: seven years later[J]. European Journal of Orthopaedic Surgery & Traumatology, 2013, 23: 671-677. 47 李玉明, 王世鑫, 高宏生, 等. 严重急性呼吸综合征患者康复期股骨头缺血性坏死和骨质疏松的影响因素[J]. 中华医学杂志, 2004, 84(16): 1348-1353. 48 Barnard D L, Day C W, Bailey K, et al. Evaluation of immunomodulators, interferons and known in vitro SARS-coV inhibitors for inhibition of SARS-coV replication in BALB/c mice[J]. Antiviral Chemistry and Chemotherapy, 2006, 17(5): 275-284. 49 Chu C M, Cheng V C C, Hung I F N, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings[J]. Thorax, 2004, 59(3): 252-256. 50 Liu X M, Zhang M M, He L, et al. Chinese herbs combined with Western medicine for severe acute respiratory syndrome (SARS)[J]. The Cochrane Database of Systematic Reviews, 2012, 10(10): CD004882. 51 Zhang X S, Alekseev K, Jung K, et al. Cytokine responses in porcine respiratory coronavirus-infected pigs treated with corticosteroids as a model for severe acute respiratory syndrome[J]. journal of Virology, 2008, 82(9): 4420-4428. 52 郝东, 何礼贤, 瞿介明, 等. SARS冠状病毒N蛋白致大鼠肺部炎症及糖皮质激素对其的作用[J]. 中华内科杂志, 2005, 44(12): 890-893. 53 Simmons G, Gosalia D N, Rennekamp A J, et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(33): 11876-11881. 54 Du Q S, Sun H, Chou K C. Inhibitor design for SARS coronavirus main protease based on “distorted key theory”[J]. Medicinal Chemistry, 2007, 3(1): 1-6. 55 Barnard D L, Day C W, Bailey K, et al. Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin[J]. Antiviral Research, 2006, 71(1): 53-63. 56 方丽, 崔雷. 利用双聚类和突发监测算法探测学科前沿及知识基础的比较分析——以h指数研究领域为例[J]. 情报杂志, 2015, 34(2): 79-83, 88. 57 田雅婷. 《新型冠状病毒感染的肺炎诊疗方案》不断更新[N]. 光明日报, 2020-02-06(002). 58 关于印发新型冠状病毒感染的肺炎诊疗方案(试行第四版)的通知[EB/OL]. (2020-01-27) [2020-02-17]. http://www.gov.cn/zhengce/zhengceku/2020-01/28/content_5472673.htm. 59 关于印发新型冠状病毒肺炎诊疗方案(试行第五版 修正版)的通知[EB/OL]. (2020-02-08) [2020-02-15]. http://www.nhc.gov.cn/yzygj/s7653p/202002/d4b895337e19445f8d728fcaf1e3e13a.shtml. 60 关于印发新型冠状病毒肺炎诊疗方案(试行第六版)的通知[EB/OL]. (2020-02-19) [2020-02-20]. http://www.nhc.gov.cn/xcs/zhengcwj/202002/8334a8326dd94d329df351d7da8aefc2.shtml. 61 Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(2): 270-273. 62 万众一心、攻克难关——新华社再访钟南山院士谈科学防控新型冠状病毒感染的肺炎疫情[EB/OL]. (2020-02-03) [2020-2-15]. http://www.gov.cn/xinwen/2020-02/03/content_5474113.htm. 63 方丽, 赵悦阳, 崔雷. 利用突发监测算法探测学科前沿及知识基础[J]. 医学信息学杂志, 2014(10): 49-54.